首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the minimum interaction theory, the chromosome evolution of eukaryotes proceeds as a whole toward increasing the chromosome number. This raises the following two questions: what was the starting chromosome number of eukaryotes and does the chromosome number increase infinitely? We attempted to provide a theoretical framework to resolve these questions. We propose that the species with n=2 observed in Protozoa, Platyhelminthes, Annelid, Algae, Fungi and higher plants would be chromosomal relicts conserving the karyotypes of ancestral eukaryotes. We also propose that the ideal highest number of eukaryotes (n(max)) can be given by an inverse of the minimum terminal interference distance (It(min)) in crossing-over (n(max)=100/It(min)). AsIt(min) =0.6 in mammals, n(max) approximately 166. On the other hand, the value estimated by computer simulations is somewhat lower with n(max)=133-138. Our arguments can be applied to other eukaryotes, if they have a localized centromere and the ratio of total synaptonemal complex/nuclear volume is comparable to that of mammals. We revealed that the index of gene shuffling per karyotypes (G) by means of the total number of gamete types with different gene combinations can be formulated asG =2(n+Fxi), where Fxi means interstitial chiasma frequency per cell corresponding to crossing-over mediated by the recombination nodule. The Fxi value increases in proportion to the n value in areas where n<40, but decreases gradually when n>40 and becomes zero when n>83. Therefore, in the ultimate karyotype with n(max)=166, FXi=0 andG =2(n)=2(166), where gene shuffling is guaranteed by the random orientation of chromosomes at the equatorial plate of meiotic metaphase I.  相似文献   

2.
3.
4.
Like other mutualisms, pollination mutualisms attract parasites, as well as opportunistic and specialist predators of the pollinators and parasites. These associated species influence the evolutionary dynamics of pairwise mutualisms. Predatory ants are frequent associates of pollination mutualisms, but their effects on the complex interactions between plants, pollinators and parasites have not yet been clearly established, even in the case of the well-described obligate interaction between figs and fig wasps. We attempted to quantify such effects for ants associated with three fig species, two dioecious ( Ficus condensa [Bruneï], F . carica [France]) and one monoecious ( F . racemosa [India]). In all these cases, ant presence on a fig tree strongly reduced the number of parasitic wasps on the figs. Experimental exclusion of ants resulted in an increase in the number of non-pollinating fig wasps on F . condensa and F . racemosa . Experimental ant supplementation led to a decrease in the number of non-pollinating fig wasps on F . carica . Moreover, on F . condensa , the level of reduction of the number of parasitic wasps depended on the number and identity of the ants. On F . carica , non-pollinating fig wasps even avoided trees occupied by the dominant predatory ant. The consistency of the effect of ants in these three cases, representing a geographically, ecologically, and taxonomically broad sample of figs, argues for the generality of the effect we observed. Because reduction of parasitism benefits the pollinator, ants may be considered as indirect mutualists of plants and pollinators in the network of complex interactions supported by fig trees.  相似文献   

5.
6.
7.
8.
Inquiline ant species are workerless social parasites whose queens reproduce in colonies of other species alongside the host queens. Inquilines arise either when one non-parasitic species evolves into an inquiline parasite of another non-parasitic species (the interspecific hypothesis), or by the speciation of intraspecific inquilines from their host stock (the intraspecific hypothesis): it is unlikely that inquilines evolve from other forms of social parasite. This paper reviews the evidence for and against the inter-and intraspecific hypotheses. All inquilines are close phylogenetic relatives of their host species (loose ‘Emery's rule’), and some are their host's closest relative (strict ‘Emery's rule’). A problem for the interspecific hypothesis is how to explain the strict Emery's rule, because phylogenetic constraints on host choice are probably quite weak. By contrast, the intraspecific hypothesis has difficulty accounting for the parasites' sympatric reproductive isolation. Facultative polygyny, in which queens may found colonies alone or by adoption into an existing multi-queen colony, should promote the evolution of small intraspecific inquilines. This is because small colony-founding queens should preferentially seek adoption, which provides the opportunity to produce a sexual-only brood. We suggest that microgynes, i.e. miniature queens found in some polygynous ants, represent such parasites. We review the evidence that inquiline species have evolved intraspecifically from microgynes in Myrmica ants. The coexistence within a species of a monogynous (singly-queened) and a polygynous form is probably a phenomenon usually unconnected with inquiline evolution. The reproductive isolation of intraspecific inquilines plausibly arises from divergent breeding behaviour associated with the parasites' small size. Such divergence could involve either a temporal separation in mating episodes, with small parasites maturing early, or a spatial separation, with small males being sexually-selected to mate near the nest with small queens seeking adoption, instead of in mating aggregations. We conclude that inquiline species strictly following Emery's rule could have evolved by the intraspecific route. If so, such species provide evidence for West-Eberhard's “alternative adaptation” hypothesis that between-species diversity frequently stems from diversity within species. They also represent likely cases of sympatric speciation. We suggest work on the parasites' phytogeny, genetics, behaviour and mating biology to test these conclusions further.  相似文献   

9.
Nucleotide sequences from the cytochrome oxidase I (COI) gene were used to reconstruct phylogenetic relationships among 15 genera of fig-pollinating wasps. We present evidence supporting broad-level co-cladogenesis with respect to most but not all of the corresponding groups of figs. Using fossil evidence for calibrating a molecular clock for these data, we estimated the origin of the fig-wasp mutualism to have occurred ca. 90 million years ago. The estimated divergence times among the pollinator genera and their current geographical distributions corresponded well with several features of the break-up of the southern continents during the Late Cretaceous period. We then explored the evolutionary trajectories of two characteristics that hold profound consequences for both partners in the mutualism: the breeding system of the host (monoecious or dioecious) and pollination behaviour of the wasp (passive or active). The fig wasp mutualism exhibits extraordinarily long-term evolutionary stability despite clearly identifiable conflicts of interest between the interactors, which are reflected by the very distinct variations found on the basic mutualistic theme.  相似文献   

10.
We describe the behavioral interactions between honeydew-collecting workers of the ants Lasius nigerand Myrmica ruginodisand females of three species of aphidiid wasps (Lysiphlebus cardui, Lysiphlebus testaceipes, Trioxys angelicae)foraging for their aphid host, Aphis fabaessp. cirsiiacanthoidis,on thistles. Using field and laboratory experiments, we show that the ant-parasitoid interactions are species specific. Workers of both ant species generally attacked and killed females of T. angelicae,but they ignored those of L. cardui.This pattern was not altered when we anesthetized the wasps slightly with carbon dioxide to reduce their mobility. Prior contacts between L. carduiand either conspecific L. nigerfrom a different nest or workers of a different ant species (M. ruginodis)did not influence L. niger'snonaggressive behavior. The number of aphids parasitized by L. testaceipeswas significantly reduced in aphid colonies attended by L. niger,although this parasitoid was rarely attacked by ants. In encounters between these species of ants and wasps, ant aggression is consistent with differences in wasp behavior. We suggest that, in addition, chemical cues located in the cuticula may enable L. carduito avoid detection by honeydew-collecting ants.  相似文献   

11.
The higher rate of non-synonymous over synonymous substitutions (dN/dS) of the X chromosome compared with autosomes is often interpreted as a consequence of X hemizygosity. However, other factors, such as gene expression, are also known to vary between X and autosomes. Analysing 4800 orthologues in six mammals, we found that gene expression levels, associated with GC content, fully account for the variation in dN/dS between X and autosomes with no detectable effect of hemizygosity. We also report an extensive variance in dN/dS and gene expression between autosomes.  相似文献   

12.
Social parasites exploit societies, rather than organisms, and rear their brood in social insect colonies at the expense of their hosts, triggering a coevolutionary process that may affect host social structure. The resulting coevolutionary trajectories may be further altered by selection imposed by predators, which exploit the abundant resources concentrated in these nests. Here, we show that geographic differences in selection imposed by predators affects the structure of selection on coevolving hosts and their social parasites. In a multiyear study, we monitored the fate of the annual breeding attempts of the solitary nesting foundresses of Polistes biglumis wasps in four geographically distinct populations that varied in levels of attack by the congeneric social parasite, P. atrimandibularis. Foundress fitness depended mostly on whether, during the long founding phase, a colony was invaded by social parasites or attacked by predators. Foundresses from each population differed in morphological traits and reproductive tactics that were consistent with selection imposed by their natural enemies and in ways that may affect host sociality. In turn, parasite traits were consistent with selection imposed locally by hosts, implying a geographic mosaic of coevolution in this brood parasitic interaction.  相似文献   

13.
Warm-blooded animals, mammals and birds, are unique not because they are endothermic in the strict sense of the term but because they use an extravagant economy: they have high energy budgets and spend a large part of their energy resources on basic maintenance. Although several advantages of endothermy are easy to indicate, mechanisms behind evolution of such a wasteful life strategy remain unclear and have been subject to intensive debate. For two decades, the aerobic capacity model has been widely recognized as a promising hypothesis and has catalyzed a new direction in ecological and evolutionary physiology--the study of correlated evolution of behavioral and morphophysiological traits. Recently, two alternative models have been proposed, both of which see evolution of high metabolic rates in birds and mammals as an element in evolution of intensive parental care. Unlike previous models, which treated individuals as static objects of fixed properties, the parental care models explicitly incorporate life histories into a evolutionary-physiology research program. The aim of this article was to outline the process of evolution of major concepts in the field, which reflects development of the paradigm of modern evolutionary physiology.  相似文献   

14.
15.
16.
尚元正  刘彦平  王瑞武  张锋 《生态学报》2024,44(13):5621-5628
互惠共生指双方物种都能通过对方增加适合度的种间关系。榕树与榕小蜂的传粉关系是自然界中典型的互惠共生系统,这种互惠关系发生在榕果中,也就是榕果是种间作用的场所,榕小蜂在其中传粉和产卵。由此,可以把榕果看作榕小蜂的生境斑块,利用集合种群理论框架构建榕树与榕小蜂互惠关系的动力学模型,研究这个互惠系统的稳定性和续存条件。由于这里的生境斑块(榕果)的动态变化性(榕果产生和掉落),模型不同于传统的生境斑块固定不变的集合种群模型,增加了描述生境动态的维度。模型表明:(1)榕果产生率足够大(大于一个阈值)是榕树与榕小蜂互惠系统能够续存的必要条件;(2)榕树和榕小蜂互惠系统存在双稳态现象(Allee效应),这个互惠系统续存需要种群大小超过一个阈值,换言之,种群大小低于这个阈值时,系统必然灭绝;(3)榕果产生率增加使榕小蜂种群增加,但不会影响未被占据的榕果数量。我们的模型不但可用来研究榕树与榕小蜂互惠系统的动力学性质,而且也是集合种群理论斑块动态化的发展。  相似文献   

17.
Chromosomal localization of rDNA in samples of five taxa of the Myrmecia pilosula species complex (Hymeoptera: Formicidae: Myrmeciinae) with 2n=3 (M. croslandi), 8 (M. imaii), 10 (M. banksi), 18 (M. haskinsorum), and 27 (M. pilosula) was carried out by fluorescence in situ hybridization (FISH) using cloned M. croslandi rDNA (pMc.r2) including the coding region for 28S rRNA. Results show that (1) the 28S rDNA in the genome of these ants is repetitive and is localized in pericentromeric C-bands, (2) the number of chromosomes carrying rDNA is two in M. croslandi, M. imaii and M. banksi, six in M. haskinsorum and ten in M. pilosula, and (3) only one or two clusters of rRNA genes generate nucleoli in each species. We suggest that the rDNA in the ancestral stock of the M. pilosula complex was localized originally in a pericentromeric C-band, and multiplied by chance with time during saltatory increases in C-banding following episodes of centric fission. Most rDNA multiplied on various chromosomes seems to be inactivated and eliminated from the genome, together with C-bands, by -inversion or centric fusion, with the remnant rDNAs dispersed in the genome by centric fission and -inversion.  相似文献   

18.
A comparative analysis of early developmental programs in a group of parasitic wasps reveals that closely related species can undergo dramatic evolutionary shifts in their patterns of embryogenesis. Developmental changes detected include alterations in early cleavage divisions, the establishment of embryonic anteroposterior polarity and modifications of the segmentation gene hierarchy described from Drosophila. These changes appear to be adaptations to parasitic development, taking place within the body of the host. Wasps illustrate a surprising plasticity in their early development and embryogenesis. The alterations associated with different parasitic strategies suggest that ecological adaptations may have profound influences on developmental processes in animals.  相似文献   

19.
Faster rates of microevolution have been recorded for plants and marine foraminifera occupying warmer low latitude environments relative to those occurring at higher latitudes. By contrast, because this rate heterogeneity has been attributed to a relationship between thermal habit and mutagenesis via a body temperature linkage, it has been assumed that microevolution in mammals should not also vary systematically with environmental temperature. However, this assumption has not previously been empirically examined. In this study, we tested for a thermally mediated influence on the tempo of microevolution among mammals using a comprehensive global dataset that included 260 mammal species, from 10 orders and 29 families. In contrast to theoretical predictions, we found that substitution rates in the cytochrome b gene have been substantially faster for species living in warmer latitudes and elevations relative to sister species living in cooler habitats. These results could not be attributed to factors otherwise thought to influence rates of microevolution, such as body mass differentials or genetic drift. Instead, the results indicate that the tempo of microevolution among mammals is either responding directly to the thermal environment or indirectly via an ecological mechanism such as the ‘Red Queen’ effect.  相似文献   

20.
1. Parasites are an important selective force for almost all organisms and drive the evolution by hosts of defence mechanisms that are energetically costly. The strength of parasitism will vary between host species according to their specific ecology and life history, and so the optimal investment in costly resistance mechanisms is also likely to vary between host species with differing ecologies. 2. Parasites are particularly important for social species such as ants, but very little is known about the strength of selection in different species. It has been suggested that, because arboreality reduces exposure to soil‐borne fungal pathogens, arboreal ant species may invest less in disease resistance. However, testing hypotheses such as this requires data on disease resistance in multiple species, and such studies have not previously been attempted. 3. Here we examine the arboreality hypothesis by comparing the disease resistance of seven Neotropical ant species with different degrees of arboreality. We exposed ants to controlled doses of the generalist, virulent fungal parasite, Metarhizium anisopliae (Metchnikoff) Sorokin. We then monitored survival, parasite sporulation, and the anti‐fungal grooming response of the ants. 4. Contrary to the hypothesis, we found that arboreal species were not less resistant to M. anisopliae than species that were ground‐dwelling, and that the species that inhabited both arboreal and ground habitats had the greatest resistance. Surprisingly, the most resistant species was one that lacked the antibiotic‐producing metapleural gland, previously considered the lynchpin of disease resistance in ants. 5. The results suggest that it may be the diversity of parasites encountered that is the greatest selection pressure. Further experimental studies with other parasites are needed to confirm the generality of the results, and similar comparative studies of other taxa are needed to understand the relationship between host ecology and the evolution of disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号