首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extract from the roots of Lotus pedunculatus plants was foundto contain a compound toxic towards fast-growing Lotus rhizobia.This compound was identified as a flavolan, which has a prodeiphinidin:procyanidin ratio of 75:25. A fast-growing strain of Rhizobium(NZP2213) which forms ineffective root nodules on L. pedunculatuswas four times more sensitive to this flavolan (ED50 = 25 ?gml–1) than another strain (NZP2037, ED50 = 100 ?g ml–1)which forms effective root nodules on this species. The rootsof another Lotus species, L. tenuis, on which both strains ofRhizobium form effective root nodules, also contained a flavolan( 95% procyanidin) but both strains were relatively insensitiveto this flavolan (EDED50 = 350 to 500 ?g ml–1) L. pedunculatusplants bearing ineffective root nodules contained two to threetimes more flavolan in their roots (5–7 mg g–1 fr.wt.)than uninoculated control plants. Experiments with seven otherLotus species and with hybrid plants developed between L. pedunculatusand L. tenuis showed a relationship between the prodeiphinidin:procyanidin ratio of the flavolan in their roots and the effectivenessof root nodules formed on these plants by NZP2213. Quantitativebinding studies of the flavolan from L. pedunculatus to NZP2037and NZP2213 indicated that, while the affinity constants forbinding were similar for both strains, the surface of strainNZP2037 contained four times more binding sites than NZP2213,possibly correlating with this strain's ability to toleratehigher concentrations of this flavolan. It is suggested thatthe differential sensitivity of these two strains of Rhizobiumto flavolans is related to their ability to form effective rootnodules on Lotus species.  相似文献   

2.
The morphology of root nodules formed on Lotus pedunculatusby two fast-growing strains of Rhizobium, NZP2037 which formseffective (nitrogen-fixing) nodules and NZP2213 which formsineffective (non-nitrogen-fixing) nodules, has been studied.The nodules formed by NZP2037 contained a central zone of bacteroid-filledplant cells surrounded by a cortex. In contrast the nodulesformed by NZP2213 contained no Rhizoblum-infected plant cells,but rhizobia were found in localized areas on the nodule surfaceand between the outer two or three cell layers of the nodule.Electron-dense osmiophilic deposits identified as flavolans(condensed tannins) were present in the vacuoles of many uninfectedplant cells in the nodules formed by both Rhizobium strains.This is the first time that flavolans have been positively identifiedin legume root nodules. In the NZP2037 nodule flavolans werepresent in the outer cortical and epidermal cells. In the ineffecitveNZP2213 nodule fiavolans were present in many of the centralnodule cells. The concentration of flavolan in the NZP2213 nodulewas 12 times higher than in the NZP2037 nodule.  相似文献   

3.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

4.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

5.
The effects of NO-3 and NH+4 nutrition on hydroponically grownwheat (Triticum aestivum L.) and maize (Zea mays L.) were assessedfrom measurements of growth, gas exchange and xylem sap nitrogencontents. Biomass accumulation and shoot moisture contents ofwheat and maize were lower with NH+4 than with NO-3 nutrition.The shoot:root ratios of wheat plants were increased with NH+4compared to NO-3 nutrition, while those of maize were unaffectedby the nitrogen source. Differences between NO-3 and NH+4-fedplant biomasses were apparent soon after introduction of thenitrogen into the root medium of both wheat and maize, and thesedifferences were compounded during growth. Photosynthetic rates of 4 mM N-fed wheat were unaffected bythe form of nitrogen supplied whereas those of 12 mM NH+4-fedwheat plants were reduced to 85% of those 12 mM NO-3-fed wheatplants. In maize supplied with 4 and 12 mM NH+4 the photosyntheticrates were 87 and 82% respectively of those of NO-3-fed plants.Reduced photosynthetic rates of NH+4 compared to NO-3-fed wheatand maize plants may thus partially explain reduced biomassaccumulation in plants supplied with NH+4 compared to NO-3 nutrition.Differences in the partitioning of biomass between the shootsand roots of NO-3-and NH+4-fed plants may also, however, arisefrom xylem translocation of carbon from the root to the shootin the form of amino compounds. The organic nitrogen contentof xylem sap was found to be considerably higher in NH+4- thanin NO-3-fed plants. This may result in depletion of root carbohydrateresources through translocation of amino compounds to the shootin NH+4-fed wheat plants. The concentration of carbon associatedwith organic nitrogen in the xylem sap of maize was considerablyhigher than that in wheat. This may indicate that the shootand root components of maize share a common carbon pool andthus differences induced by different forms of inorganic nitrogenare manifested as altered overall growth rather than changesin the shoot:root ratios.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize, nitrogen, growth, photosynthesis, amino acids, xylem  相似文献   

6.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

7.
Soybean [Glycine max (L.) Merrill] plants that had been subjectedto 15 d of nitrogen deprivation were resupplied for 10 d with1.0 mol m–3 nitrogen provided as NO3, NH4+, orNH4++NO3 in flowing hydroponic culture. Plants in a fourthhydroponic system received 1.0 mol m–3 NO3 duringboth stress and resupply periods. Concentrations of solublecarbohydrates and organic acids in roots increased 210 and 370%,respectively, during stress. For the first day of resupply,however, specific uptake rates of nitrogen, determined by ionchromatography as depletion from solution, were lower for stressedthan for non-stressed plants by 43% for NO3- resupply, by 32%for NH4+ + NO3 resupply, and 86% for NH4+ resupply. Whenspecific uptake of nitrogen for stressed plants recovered torates for non-stressed plants at 6 to 8 d after nitrogen resupply,carbohydrates and organic acids in their roots had declinedto concentrations lower than those of non-stressed plants. Recoveryof nitrogen uptake capacity of roots thus does not appear tobe regulated simply by the content of soluble carbon compoundswithin roots. Solution concentrations of NH4+ and NO3 were monitoredat 62.5 min intervals during the first 3 d of resupply. Intermittent‘hourly’ intervals of net influx and net effluxoccurred. Rates of uptake during influx intervals were greaterfor the NH4+ -resupplied than for the NO3 -resuppliedplants. For NH4+ -resupplied plants, however, the hourly intervalsof efflux were more numerous than for NO3 -resuppliedplants. It thus is possible that, instead of repressing NH4+influx, increased accumulation of amino acids and NH4+ in NH4+-resupplled plants inhibited net uptake by stimulation of effluxof NH4+ absorbed in excess of availability of carbon skeletonsfor assimilation. Entry of NH4+ into root cytoplasm appearedto be less restricted than translocation of amino acids fromthe cytoplasm into the xylem. Key words: Ammonium, nitrate, nitrogen-nutrition, nitrogen-stress, soybean  相似文献   

8.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

9.
Seeds used to plant a crop may contain sufficient molybdenum(Mo) to prevent subsequent Mo deficiency in the crop even whenthey are sown on Mo deficient soils. However, little is knownabout either the sources of the Mo acquired by the seed, orthe timing of its redistribution during seed development. Aglasshouse experiment was set up to examine the effect of Mosupply and nitrogen source on the redistribution of Mo withinblack gram, from full flowering to seed maturity. Treatmentscomprised two sources of N (symbiotic N2fixation, NH4NO3), twolevels of Mo supply [nil (-Mo), 0.64 mg Mo kg-1soil (+Mo)] andfour harvests (full flowering, early pod setting, late pod fillingand seed maturity). The redistribution of Mo in black gram wasexamined by determining changes over time in the content ofMo in plant parts at each growth stage. Molybdenum supply and the plant growth stage strongly affectedthe redistribution of Mo to the seed. In -Mo plants relianton symbiotic N2fixation, Mo redistributed from roots, stemsand leaves was the only source of Mo for reproductive developmentsince, from full flowering until maturity, there was no netincrease in whole plant Mo. For pod and early seed development,the roots were the major source of Mo in -Mo plants. After latepod filling, nodules replaced roots as the major source of Mofor seed fill in -Mo plants. By contrast, for +Mo plants relianton symbiotic N2fixation, Mo taken up from the soil after fullflowering could have supplied nearly 50% of the seed Mo. Themajor sources of Mo for seed filling in +Mo plants were middlestem leaves during early podding, and middle stems and pod wallsfrom late podding. Supplying NH4NO3to plants from sowing had little effect on Modistribution or redistribution in +Mo black gram plants. However,in -Mo plants it accelerated the loss of Mo from middle stemsand their leaves compared to nodulated plants. Black gram; Vigna mungo L. Hepper; distribution; molybdenum; nitrogen; nodules; redistribution; seed fill  相似文献   

10.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

11.
Marques, I. A., Oberholzer, M. J. and Erismann, K. H. 1985.Metabolism of glycollate by Lemna minor L. grown on nitrateor ammonium as nitrogen source.—J. exp. Bot. 36: 1685–1697. Duckweed, Lemna minor L., grown on inorganic nutrient solutionscontaining either NH4+ or NO3 as nitrogen source wasallowed to assimilate [1-14C]- or [2-14C]glycollate during a20 min period in darkness or in light. The incorporation ofradioactivity into water-soluble metabolites, the insolublefraction, and into the CO2 released was measured. In additionthe extractable activity of phosphoenolpyruvate carboxylasewas determined. During the metabolism of [2-14C]glycollate in darkness, as wellas in the light, NH4+ grown plants evolved more 14CO2 than NO3grown plants. Formate was labelled only from [2-14C]glycollateand in NH4+ grown plants it was significantly less labelledin light than in darkness. In NO3 grown plants formateshowed similar radioactivity after dark and light labelling.The radioactivity in glycine was little influenced by the nitrogensource. Amounts of radioactivity in serine implied that thefurther metabolism of serine was reduced in darkness comparedwith its metabolism in the light under both nitrogen regimes.In illuminated NH4+ plants, serine was labelled through a pathwaystarting from phosphoglycerate. After [1-14C]glycollate feedingNH4+ grown plants contained markedly more radioactive aspartateand malate than NO3 plants indicating a stimulated phosphoenolpyruvatecarboxylation in plants grown on NH4+. Key words: Photorespiration, glycollate, nitrogen, Lemna  相似文献   

12.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

13.
As rice can use both nitrate (NO3-) and ammonium (NH4+), we have tested the hypothesis that the shift in the pattern of cultivars grown in Jiangsu Province reflects the ability of the plants to exploit NO3- as a nitrogen (N) source. Four rice cultivars were grown in solution culture for comparison of their growth on NO3- and NH4+ nitrogen sources. All four types of rice, Xian You 63 (XY63), Yang Dao 6 (YD), Nong Keng 57 (NK) and Si You 917 (SY917), grew well and produced similar amounts of shoot biomass with 1 mmol/L NH4+ as the only N source. However, the roots of NK were significantly smaller in comparison with the other cultivars. When supplied with 1 mmol/L NO3-, YD produced the greatest biomass; while NK achieved the lowest growth among the four cultivars. Electrophysiological measurements on root rhizodermal cells showed that the NO3--elicited changes in membrane potential (ΔEm) of these four rice cultivars were significantly different when exposed to low external NO3- (<1 mmol/L); while they were very similar at high external NO3- (10 mmol/L). The root cell membrane potentials of YD and XY63 were more responsive to low external NO3- than those of NK and SY917. The ΔEm values for YD and XY63 rhizodermal cells were almost the same at both 0.1 mmol/L and 1 mmol/L NO3-; while for the NK and SY917 the values became larger as the external NO3- increased. For YD cultivar, ΔEm was measured over a range of NO3- concentrations and a Michaelis-Menten fit to the data gave a Km value of 0.17 mmol/L. Net NO3- uptake depletion kinetics were also compared and for some cultivars (YD and XY63) a single-phase uptake system with first order kinetics best fitted the data; while other cultivars (ND and SY917) showed a better fit to two uptake systems. These uptake systems had two affinity ranges: one had a similar Km in all the cultivars (0.2 mmol/L); the other much higher affinity system (0.03 mmol/L) was only present in NK and SY917. The expression pattern of twelve different NO3- transporter genes was tested using specific primers, but only OsNRT1.1 and OsNRT2.1 expression could be detected showing significant differences between the four rice cultivars. The results from both the physiological and molecular experiments do provide some support for the hypothesis that the more popular rice cultivars grown in Jiangsu Province may be better at using NO3- as an N source.  相似文献   

14.
Cotyledons of faba bean (Vicia faba L. cv. Fiord) were removedto determine whether an apparent delay in nodulation of thiscultivar could be attributed to an inhibitor from these organs.Cotyledons were left intact or excised from seedling plants14 and 18 d after sowing and plants grown with or without 2·5mm NO3. Seedling growth was depressed when cotyledons were removed onday 14 but not when removed on day 18. Removal of the cotyledonsat day 14 reduced nodule number and nodule weight in the absenceof NO3, but in the presence of NO2, nodule numberwas unaffected and only nodule weight was reduced. Cotyledonremoval at day 18 increased both nodule number and nodule weightwith +NO3 but not with –NO2. Acetylene reduction(AR) was markedly depressed by NO3. Cotyledon removalat day 14 decreased AR but removal at day 18 resulted in anincrease in AR. We suggest from these results that faba beancotyledons have an inhibitory effect on nodule activity andon nodulation and this interacts with NO3. This can beexplained through a ‘feed-back’ regulation of N2fixation by soluble N in the seedling. Vicia faba, faba bean, nodule number, nodulation, nodule activity, acetylene reduction, N2 fixation, cotyledon removal, nitrate  相似文献   

15.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

16.
Concentrations of inorganic cations are often lower in plantssupplied with NH4+ as compared with NO3. To examine whetherthis is attributable to impaired root uptake of cations or lowerinternal demand, the rates of uptake and translocation of K,Mg, and Ca were compared in maize plants (Zea mays L.) withdifferent growth-related nutrient demands. Plants were grownin nutrient solution with either 1·0 mol m–3 NO3or NH4+ and the shoot growth rate per unit weight of roots wasmodified by varying the temperature of the shoot base (SBT)including the apical shoot meristem. The shoot growth rate per unit weight of roots, which was takenas the parameter for the nutrient demand imposed on the rootsystem, was markedly lower at 12°C than at 24°C SBT.As a consequence of the lower nutrient demand at 12°C SBT,uptake rates of NO3 and NH4+ declined by more than 50%Compared with NO3 supply, NH4+ nutrition depressed theconcentrations of K and particularly of Ca in the shoot, bothin plants with high and with low nutrient demand. This indicatesa control of cation concentration by internal demand ratherthan by uptake capacity of the roots. Translocation rates of K, Mg and Ca in the xylem exudate werelower in NH4+- than in NO3-fed plants. Net accumulationrates of Ca in the shoot were also decreased, whereas net accumulationrates of K in the shoot were even higher in NH4+-fed plants.It is concluded that reduced cation concentrations in the xylemsap of plants supplied with NH4+ are due to the lower demandof cations for charge balance. The lower K translocation tothe shoot is compensated by reduced retranslocation to the roots.For Ca, in contrast, decreased translocation rates in NH4+-fedplants result in lower shoot concentration. Key words: Nitrogen form, cation nutrition, charge balance, xylem exudate, recirculation  相似文献   

17.
The single-gene mutation afila in pea (Pisum sativum L.) resultsin the replacement of proximal leaflets with branched tendrils,thereby reducing leaf area. This study investigated whethertheafila line could adjust biomass partitioning when exposedto varying nutrient regimes, to compensate for reduced leafarea, compared with wild-type plants. Wild-type and afila near-isogeniclines were grown in solution culture with nitrate-N added toinitially N-starved seedlings at relative addition rates (RN)of 0.06, 0.12, 0.15 and 0.50 d-1. The relative growth rate (RW)of the whole plants closely matched RNat 0.06 and 0.12 d-1,but higher RNresulted in a slightly higher growth rate. At agiven RN, the wild-type line had lower plant nitrogen statusthan the afila line. RWof the roots of the afila line was lessthan RWof the roots of the wild-type at the three higher ratesof N supply despite a greater accumulation of N in the rootsof the afila plants. Consequently, plant nitrogen productivity(growth rate per unit nitrogen) was lower for afila. Dry matterallocation was strongly influenced by nitrogen status, but nodifferences in shoot–root dry matter allocation were foundbetween wild-type and afila with the same plant N status. Theseresults imply that decreased leaf area as a result of the single-genemutation afila affects dry matter allocation, but only accordingto its effect on the nitrogen status. Copyright 2000 Annalsof Botany Company Pisum sativum, pea, nitrogen limitation, growth, shoot–root allocation, relative growth rate, nitrogen productivity, isolines  相似文献   

18.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   

19.
The significance of nickel (Ni), which is essential for ureaseactivity, for growth and nitrogen (N) metabolism ofBrassicanapusgrown in nutrient solution with either NH4NO3or urea assole N source was investigated. Although Ni contents were below25 µg kg-1d. wt, growth of plants relying on NH4NO3wasnot affected by the Ni status. However, supplementing the growthmedium with 0.04 µMNi enhanced dry matter production ofurea-grown plants significantly. Urease activity was significantlyreduced in leaves and roots of plants grown without supplementaryNi irrespective of N source. Plants grown with urea withoutadditional Ni accumulated large amounts of urea and had loweramino acid contents indicating impaired usage of the N supplied,while those grown with NH4NO3under Ni-deprived conditions accumulatedendogenous urea in their older leaves. It is suggested thatNi may not be strictly essential for plants receiving mineralN, or that the critical level is well below 25 µg kg-1d.wt. These results confirm that Ni is required for urease activityand thus for growth of plants on urea-based media, as well asfor recycling endogenous urea.Copyright 1999 Annals of BotanyCompany. Brassica napusvar.annua, amino acids, N nutrition, nickel, spring rape, urea, urease activity.  相似文献   

20.
DAKORA  FELIX D. 《Annals of botany》1998,82(5):687-690
Nitrogen-fixing activity in two nodulated African legumes, Bambaragroundnut (Vigna subterraneaL.) and Kersting's bean (MacrotylomageocarpumL.), was assessed in the presence of nitrate (NO3-)ions in the rooting medium. Nitrogenase activity was unimpairedby the supply of 5 mol m-3NO3to both species. Also, large concentrationsof ureides dominated the transpiration stream of NO3-fed plants.Compared to other symbiotic legumes cultured with similar NO3concentrations,nodule functioning in the tested landraces of Bambara groundnutand Kersting's bean is tolerant of NO3ions in the rhizosphere.The potential benefits of such naturally occurring NO3-tolerantsymbioses are substantial, as they would permit inorganic Nfertilizer application in intercropping systems without inhibitingN2fixation in the associated legumes.Copyright 1998 Annals ofBotany Company NO3tolerance, Bambara groundnut, Kersting's bean, nitrogenase activity, xylem ureides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号