首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root development, in combination with indirect mechanisms, such as mineral solubilisation (including solubilisation via acidification, redox, chelation and hydrolysis).  相似文献   

2.
The enzymatic activity and the biocontrol ability of two new isolates of Trichoderma spp. (T-68 and Gh-2) were compared in laboratory and glasshouse experiments with a previously studied T. harzianum strain (T-35). In dual culture tests with Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. vasinfectum, isolates T-68 and Gh-2 overgrew the colonies of Fusarium, whereas T-35 failed to parasitize both wilt pathogens. Under glasshouse conditions, the three isolates of Trichoderma were effective in controlling Fusarium wilt of cotton but only T-35 was effective against F. oxysporum f. sp. melonis on muskmelon. When the three Trichoderma isolates were grown on liquid media containing laminarin, colloidal chitin or F. oxysporum f. sp. melonis cell walls as sole carbon sources, maximum β-1,3-glucanase and chitinase specific activity in the culture filtrates of all fungi was reached after 72h of incubation. When culture filtrates of the three Trichoderma isolates were incubated with freeze-dried mycelium of F. oxysporum f. sp. melonis or F. oxysporum f. sp. vasinfectum, different concentrations of glucose and N-acetyl-D-glucosamine were released. Overall no correlation was found between enzymatic activity and the biocontrol capability against Fusarium wilt on muskmelon and cotton.  相似文献   

3.
The selection of new isolates of Trichoderma harzianum with high suppressive activity against Fusarium oxysporum is a suitable strategy to avoid the increase of chemical pesticides. In this study, 31 isolates of Trichoderma sp. were analyzed by RAPD-PCR and five isolates of T. harzianum (T-30, T-31, T-32, T-57 and T-78) were selected. The expression of genes encoding for NAGases (exc1 and exc2), chitinases (chit42 and chit33), proteases (prb1) and β-glucanases (bgn13.1) activities and their respective in vitro enzymatic activities were measured. Dual plate confrontation assays of the isolates against F. oxysporum were also tested. Different profiles of gene expression between the different T. harzianum isolates were related to enzymatic activities values and dual plate confrontation. In this work, the T. harzianum isolates T-30 and T-78 showed the greatest mycoparasitic potential against F. oxysporum, which could lead to improved biocontrol of this phytopathogen.  相似文献   

4.
Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50 % of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80 %. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture.  相似文献   

5.
6.
Several species of the fungal genus Trichoderma act as antagonists of other fungi. A number of strains from the Trichoderma species T. harzianum Rifai are used as biological control agents for the control of soilborne as well as foliar plant pathogens. Six T. harzianum strains, five of them isolated from commercial preparations, were evaluated for their capability to control the bean rust fungus Uromyces appendiculatus (Pers. ex Pers.) Unger. Different kinds of leaf disc assays were performed with conidial spore suspensions and sterile culture filtrates of the T. harzianum strains. Great differences were observed concerning the efficacy of the Trichoderma strains to reduce the number of the uredial pustules developing after rust inoculation which followed the application of the particular Trichoderma strains. Efficacy values ranged from 1 to over 50%. Increasing spore or culture filtrate concentrations of the two most effective isolates T12 and TU led to decreases in the number of developing uredial pustules. Culture filtrate applications had a protective but no curative effect. T12 spore suspensions maintained their disease reducing activity even when autoclaved. This and some other evidence for an antibiotic interaction between T. harzianum and U. appendiculatus are discussed. Handling Editor: Reijo Karjalainen.  相似文献   

7.
The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as “Trichoderma harzianum” Rifai and one biocontrol strain recognized as T. viride, was carried out using several molecular techniques. A certain degree of polymorphism was detected in hybridizations using a probe of mitochondrial DNA. Sequencing of internal transcribed spacers 1 and 2 (ITS1 and ITS2) revealed three different ITS lengths and four different sequence types. Phylogenetic analysis based on ITS1 sequences, including type strains of different species, clustered the 17 biocontrol strains into four groups: T. harzianum-T. inhamatum complex, T. longibrachiatum, T. asperellum, and T. atroviride-T. koningii complex. ITS2 sequences were also useful for locating the biocontrol strains in T. atroviride within the complex T. atroviride-T. koningii. None of the biocontrol strains studied corresponded to biotypes Th2 or Th4 of T. harzianum, which cause mushroom green mold. Correlation between different genotypes and potential biocontrol activity was studied under dual culturing of 17 BCAs in the presence of the phytopathogenic fungi Phoma betae, Rosellinia necatrix, Botrytis cinerea, and Fusarium oxysporum f. sp. dianthi in three different media.  相似文献   

8.
The growth capability of Trichoderma harzianum Rifaii Tl was tested on Malt Extract and Czapeks Dox agar containing different concentrations of Cu2+, Zn2+, Mn2+, Fe2+ and Ca2+. The T. harzianum Tl isolate was observed to produce mycelia and spores in various mineral-containing media. It showed the lowest tolerance to Ca2+ and the highest tolerance to Fe2+. Solubilization capability of T. harzianum Tl for some insoluble minerals via acidification of medium has been tested on MnO2, CuO, Fe2O3 and metallic Zn. T. harzianum Tl was able to solubilize MnO2 and metallic Zn in a liquid medium.  相似文献   

9.
The biochemical nature of the interaction between the antagonistic fungus Trichoderma harzianum strain T-203 and cucumber roots was studied during the early stages of root colonization by the fungus. Pathogenesis related (PR) proteins of the plant and enzyme activity of the fungus following the penetration and colonization of the roots by T. harzianum were explored up to 72 h post-inoculation. Scanning electron microscopy (SEM) revealed typical fungal structures previously associated with mycoparasitic interactions of T. harzianum strains during biological control. These included hyphal coiling and appressoria formation. Compared to untreated control, cucumber roots treated with T. harzianum T-203 exhibited higher activities of chitinase (EC 3.2.1.14), β-1,3-glucanase (EC 3.2.1.6), cellulase (EC 3.2.1.4) and peroxidase (EC 1.11.1.7), up to 72 h post-inoculation. Plants treated with a chemical inducer of the plant defence response, 2,6-dichloroisonicotinic acid (INA) displayed responses that were similar but not identical to those of plants inoculated with T. harzianum. In vivo staining of chitinase activity in fresh root sections allowed the localization of the activity in roots treated with either T. harzianum T-203 or INA. The formation of fluorescent products mainly in intercellular spaces of the induced roots provided evidence for the involvement of the plant defence system. In addition to its well-recognized mycoparasitic nature, it is suggested that Trichoderma’s association with roots reduce root disease through activation of the plant’s defence response.  相似文献   

10.
Malformation disease of Mango (Mangifera indica L.) caused by Fusarium moniliforme var. subglutinans is one of the most destructive diseases, which is a major production constraint in the mango-growing regions of India. In this study, The bioagents Trichoderma viride (Tr1), Trichoderma virens (Tr2) and Trichoderma harzianum (Tr3) were evaluated in culture with the pathogens to monitor the antagonistic effect and their volatile compound and culture filtrates (non-volatile compound). It was found that all the three isolates of bioagents significantly checked the growth of F. moniliforme var. subglutinans. In dual culture, the best result was obtained with T. harzianum followed by T. virens and T. viride. A similar result was also observed in the case of culture filtrates ofTrichoderma spp. The results clearly showed that inhibition of the growth of the fusaria isolates by T. harzianum was significantly superior to T. viride andT.virens. In case of antifungal activity of volatile compounds released by Trichoderma isolates, it was also observed that T. virens was more superior to T.harzianum and T. viride.  相似文献   

11.
Trichoderma species have become the important means of biological control for fungal diseases. This research was carried on to access the high β-1,3-glucanase and β-1,4-glucanase enzyme producer of Trichoderma species isolates using two different carbon sources for finding a method to obtain more concentrate culture filtrates. Therefore, 14 Trichoderma isolates belonging to species: Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum1, T. orientalis, T. harzianum2, T. brevicompactum, T. viride and T. spirale were cultured in Wiendling’s liquid medium plus 0.5% glycerol or 0.5% Phytophthora sojae-hyphe as the carbon source in shaking and non-shaking (stagnant) statuses. Enzyme activity rate and total protein were evaluated in raw, acetony and lyophilized concentrated culture filtrates and the specific enzyme activity of β-1,3-glucanase and β-1,4-glucanase were measured by milligramme glucose equivalent released per minute per milligramme total protein in culture filtrates. The results showed that using Phytophthora – hyphe in medium increased the enzyme activities as compared to glycerol at all Trichoderma species which suggested that these substrates can also act as inducer for synthesis of lytic enzymes, in addition the most enzymes activity was observed in the lyophilised concentrated culture filtrate. The most successful species in β-1,3-glucanase and β-1,4-glucanase enzymes activities were T. brevicompactum and T. virens and these species can be used for mass production of these enzymes which are supposed to be used in commercial formulation and also will be able to control P. sojae directly.  相似文献   

12.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

13.
Summary When culture filtrates ofTrichoderma harzianum E58 were concentrated by passage through an ultrafiltration membrane with a molecular weight exclusion limit of 10,000 Daltons, 80% of the original xylanase activity was recovered in the ultrafiltrates. Culture filtrates and ultrafiltrates which were concentrated by rotary evaporation contained inhibitors which restricted the fermentation of the hemicellulose-derived sugars to 2,3-butanediol. A simple solvent-exchange treatment of the ultrafiltrates could effectively concentrate the xylanases as well as remove the fermentation inhibitors.  相似文献   

14.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

15.
The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.  相似文献   

16.
We describe a polymerase chain reaction (PCR)-based test that is specific for the pathogenic European biotype 2 (Th2) and North American biotype 4 (Th4) of Trichoderma harzianum, responsible for the green mold epidemic in the cultivated mushroom, Agaricus bisporus. A PCR primer pair was designed that targets a 444-bp arbitrary sequence in the genome of Th4. The primers also amplified the same product with Th2, but showed no reactivity with other biotypes of T. harzianum, several biocontrol Trichoderma, or with 31 other genera and species of fungi. The PCR-based test should have application in disease management programs, and in the evaluation of biocontrol Trichoderma for potential pathogenicity on mushrooms. Received: 23 November 1998 / Received revision: 19 February 1999 / Accepted: 5 March 1999  相似文献   

17.
Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.  相似文献   

18.
Thirty-five strains ofTrichoderma viride andT. harzianum were screened for their antagonistic ability against the rice sheath blight pathogen,Rhizoctonia solani. The strains that inhibited/overgrew the phytopathogenic fungus were considered effective. Light microscopic studies showed the antagonism of the hyphae of effectiveTrichoderma strains towards their host hyphae. Chitinase activity ofTrichoderma culture filtrates was enhanced, when colloidal chitin was used as the sole carbon source, instead of glucose. Chitinase pattern differed among the four select strains. The chitinase isoforms are induced differentially by carbon sources. The chitin affinity column fraction ofTrichoderma culture filtrate inhibited,in vitro, the growth ofR. solani.  相似文献   

19.
Nine isolates of Trichoderma were collected from Assiut Governorate, Egypt, as leaf surface and endophytic fungi associated with onion flora stalks. Four isolates were identified as Trichoderma harzianum, while five isolates were belonging to Trichoderma longibrachiatum. The antagonistic activity of these isolates against onion purple blotch pathogen Alternaria porri was studied in vitro using dual culture assay. All tested Trichoderma isolates showed mycoparasitic activity and competitive capability against the mycelial growth of A. porri. Mycoparastic activity of Trichoderma was manifested morphologically by the overgrowth upon the mycelial growth of the pathogen and microscopically by production of coiling hyphae around pathogen hyphae. Isolates of Tharzianum exhibited high ability to compete on potato dextrose agar (PDA) medium causing the maximum rate of pathogen inhibition (73.12%), while isolates of T. longibrachiatum showed inhibition rate equalling 70.3%. Chitinase activity of Trichoderma was assayed, and T. harzianum Th‐3013 showed the maximum value contributing 2.69 U/min. Application of T. harzianum Th‐3013 to control purple blotch disease in vivo under greenhouse conditions caused disease reduction up to 52.3 and 79.9% before and after 48 h of pathogen inoculation, respectively, while the fungicide Ridomil Gold Plus caused disease reduction comprising 56.5 and 71.7%, respectively. This study proved that T. harzianum Th‐3013 as a biocontrol agent showed significant reduction in onion purple blotch disease compared with the tested fungicide.  相似文献   

20.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号