首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern of distribution of 14C-labelled assimilates translocatedfrom a leaf on the flower stem of carnation was found to varywith both the ambient air temperature and the localized temperatureof the flower bud. A high bud temperature increased the proportionofassimilates moving into the floral tissues while a low budtemperature increased the proportion accumulating in the stemabove the source leaf. When the air temperature was raised independentlyof the bud temperature, the stem gained assimilates at the expenseof the flower, but if both air temperature and bud temperaturewere raised together, effects of bud temperature predominatedand movement of assimilates into the flower was promoted. Therole of the flower in mediating effects of temperature is discussedwith reference to the distribution of invertase activity inthe shoot.  相似文献   

2.
In the sweet pea (Lathyrus odoratus L.) genes Dnl andDrh controlthe production of a graft-transmissible substance which delaysflowering and promotes outgrowth of basal laterals. Seed vernalizationpromotes flowering and reduces lateral outgrowth in intact plantsand grafted scions of genotype DniDnl, suggesting that vernalizationreduces output of the Dni system, possibly by disrupting therelationship between chronological and plastochronic age. Whenlateral outgrowth and floral abortion are used as indicatorsof inhibitor levels, it can be shown that vernalized Dni plantspossess more inhibitor but initiate flower buds at a lower nodethan unvernalized dn plants. This supports the suggestion thatin regard to floral initiation vernalization also alters thesensitivity of the shoot apex to the flowering hormone(s). InLathyrus odoratus an hormonally based vernalization responseof considerable magnitude can be shown for day-neutral (dndn)lines, supporting the suggestion that vernalization also influencesthe level of a flower promotor. Lathyrus odoratus L., sweet pea, vernalization, flowering, branching, genotype, grafting  相似文献   

3.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

4.
The partition of 14C labelled current assimilates to root insimulated swards of Lolium perenne cv. S24 was measured duringthe transition from vegetative growth in autumn to reproductivegrowth in spring under close to natural conditions of lightand temperature. Assimilate partitioning was also measured in‘established’ swards cut three times during thegrowing season and in vegetative ‘seedling’ swardsgrowing in autumn and in spring. All measurements were madewhen the swards had achieved more than 90 per cent light interception,and all swards were abundantly supplied with water and mineralnutrients. During autumn there was a gradual decrease in the proportionof assimilates partitioned to the roots in both the ‘established’and the ‘seedling’ swards. In the established swards,partition to roots was low over winter, increased during earlyspring, but decreased dramatically, later in the spring, whenstem elongation began. In contrast, in the unvernalized vegatativeseedling swards in spring, partition to roots remained high. The seasonal pattern of assimilate partitioning is consideredin relation to changes in the natural environment and the rateat which the crop fixed carbon in photosynthesis. A decreasein the proportion of assimilates partitioned to roots duringlate spring was significant in increasing the production ofshoot at that time but seasonal differences in partition contributedvery little to the marked differences in shoot growth betweenthe spring and autumn crop. Lolium perenne L., perennial ryegrass, partition of assimilates, flowering  相似文献   

5.
L. T. Evans  I. F. Wardlaw 《Planta》1966,68(4):310-326
Summary It is widely accepted that the floral stimulus produced in leaves is carried to the shoot apex passively in the phloem with the assimilate stream. Three kinds of evidence presented here suggest that the floral stimulus moves independently of the assimilates.Simultaneous determination of the velocities of translocation out of the seventh leaf blade, in comparable plants under the same conditions, yielded estimates of 1–2.4 cm/hr for the floral stimulus, and 77–105 cm/hr for 14C-labelled assimilates.The effect of the size of the seventh leaf on its ability to export assimilates or to initiate flowering was quite different. Leaves with only 14–26% of their final blade area emerged exported little assimilate, yet were highly active in inducing flowering.The effect of DCMU applications at a range of concentrations on the translocation of assimilates was quite different from their effect on the flowering response.  相似文献   

6.
Photoperiodic control of flowering in the short day plant Perilla involves the transmission of a floral stimulus from induced leaves to the shoot apex. We have studied the basipetal movement of this stimulus and of 14C-labeled assimilates in plants with an induced leaf (donor) grafted into the uppermost internode of a vegetative plant in which the axillary shoots at various nodes along the stem function as receptors.  相似文献   

7.
Ho  L. C.; Adams  P. 《Annals of botany》1994,73(5):539-545
The regulation of the partitioning of dry matter and calciumin relation to fruit growth was investigated in cucumber plantsgrown in the salinity range of 3-8 mS cm-1 in NFT (NutrientFilm Culture), with or without a fruit pruning treatment. Thedry weight gain of the plants was proportional to the outdoorintegral irradiance, with a common daily rate of 1 g MJ-1 m-2in two crops grown under summer (18 MJ m-2 d-1) and autumn (7MJ m-2 d-1) conditions. Within the salinity range studied, thereduction of plant dry weight was 9% mS-1 cm-1. However, fruitdry weight was only reduced at salinities above 5·5 mScm-1, although the daily dry matter accumulation by fruit, asa percentage of total dry matter accumulation, was increased.Salinity reduced the dry matter accumulation in the young shootproportionally more than in the fruit. Although the total plantCa content was reduced by 13% mS-1 cm-1, the Ca content of theyoung shoot was reduced by 16·6%, compared to 11% inthe fruit. Pruning fruit reduced neither plant dry weight norCa uptake. The growth of the remaining fruit, and to a lesserdegree of the young shoot, accounted for all surplus assimilates.Thus, fruit were the dominant sinks for assimilates whilst themature leaves were the strongest sinks for Ca. Nevertheless,the fruit sustained the capacity to import Ca better than theyoung shoot, when supplies of both assimilates and Ca were reducedby high salinity.Copyright 1994, 1999 Academic Press Cucumber, Cucumis sativus L., salinity, fruit pruning, dry matter and calcium  相似文献   

8.
The transfer of 14C-labelled assimilates between a tiller andits parent shoot was examined in young plants of Lolium multiflorumLam. Radiocarbon was exported freely from an expanded laminato sinks within the shoot axis from which it originated andto the root system. Lesser amounts of radiocarbon were exportedto the other shoot. It is suggested that the reciprocal exchangeof radiocarbon between tiller and main shoot occurred principallyvia a direct pathway through stem tissues rather than via apathway involving the roots.  相似文献   

9.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

10.
Promotion of sink activity of developing rose shoots by light   总被引:7,自引:6,他引:1       下载免费PDF全文
Mor Y  Halevy AH 《Plant physiology》1980,66(5):990-995
Holding young rose shoots (Rosa hybrida cv. Marimba) in darkness while the rest of the plant was in light reduced the amount of 14C assimilates recovered from the darkened shoot by half. Relative specific activity of the shoot tip grown in light was 13.5 times greater than that of the darkened one. The flower bud at the shoot tip degenerated in darkness and died. Shoots 2 to 3 centimeters long, after flower initiation, were most sensitive to the dark treatment. The degeneration is a gradual and reversible process in the first 8 days of darkness, followed by irreversible damage and atrophy. Darkening enhanced the ability of the young leaves to compete for the available assimilates over that of the darkened shoot tip. The enhancement of the mobilizing ability of the shoot tip by light is independent of photosynthesis since spraying with 3-(3,4-dichlorophenyl)-1,1-dimethylurea or holding shoots in a CO2-free atmosphere did not diminish the promoting effect of light on flower bud development or assimilate import. The possibility that light exerts its effect by photoproduction of ATP was also excluded inasmuch as no differences were found in ATP levels of shoot tips held in darkness and those held in light.  相似文献   

11.
Gibberellin-like substances and an auxin similar to IAA weredetected by bioassays in extracts of flowers of Chrysanthemummorifolium. The activity of these substances was shown to reacha maximum early in the development of the flower when its relativegrowth-rate was at a maximum, and then to decline with the relativegrowth-rate. The leaves of lateral flowering shoots were found to containgibberellins similar to those detected in the flowers whilea different gibberellin, which appeared to decrease in activitywith the age of the shoot, was detected in the stem. An auxinsimilar to indol-3yl-acetic acid (IAA) was also detected inthese stems. Growth-promoting substances were not detected inthe old stems and leaves from the main shoot. Gas-liquid chromatographyrevealed the presence of a number of additional gibberellinsin the flowers. The chemical nature of the growth substances is discussed inrelation to their biological and chromatographic behaviour.  相似文献   

12.
MENHENETT  R. 《Annals of botany》1979,43(3):305-318
The growth retardants chlorphonium chloride, daminozide anda new, quaternary ammonium compound, piproctanyl bromide, allreduced shoot length and delayed the time of flowering of thepot chrysanthemum (Chrysanthemum morifolium Ramat) cv. BrightGolden Anne grown throughout in short days. The retardants delayedflowering by reducing the rate of flower bud development andnot by influencing bud initiation. In the case of chlorphoniumchloride and daminozide, a single dose of 20 or 40 µggibberellic acid (GA) completely overcame the effects on bothstem length and flowering, whereas when piproctanyl bromidehad been applied GA did not always bring about a total reversal.Responses to GA were recorded a few days after its application.Neither the retardants nor Ga altered leaf number. Only whenpiproctanyl bromide was the retardant did indol-3-ylacetic acidproduce a small but significant increase in stem length at flowering. The results are consistent with a theory of retardant actionin which gibberellins play the dominant role and strongly suggestthat these hormones are a major factor influencing both stemextension and the rate of flower-bud development in the chrysanthemum.They may promote flower development and thus hasten floweringby attracting assimilates to these organs. Chrysanthemum morifolium Ramat, stem extension, flower development, growth retardants, gibberellic acid, indol-3-ylacetic acid  相似文献   

13.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

14.
In vitro flowering of bitter melon   总被引:4,自引:0,他引:4  
Flowers were formed from shoot tips of bitter melon (Momordica charantia L.) cultured on Murashige and Skoog medium supplemented with 90 mM sucrose, 0.05 mM Fe2+ and 4 µM N6-benzyladenine (BA). The addition of 0.05 mM Fe2+ to the medium prevented chlorosis of the explant and promoted normal flowering. Increasing the ratio of carbon to nitrogen promoted male flower formation but intensively inhibited vegetative growth. The influence of cytokinin on the morphogenesis of the explant was highly notable. Flowers could be formed after a 15- to 20-day exposure to kinetin (Kin) or BA. Kin and BA had opposite effects with regard to the development of the explant. Kin promoted flower formation, especially female, but inhibited branch bud formation. Conversely, BA promoted branch bud formation and also promoted male flower formation when present at a concentration of 1-2 µM, but completely inhibited flower formation at 4-8 µM. Fluorescein diacetate staining and in vitro germination showed that in vitro pollen were of a fairly high viability.  相似文献   

15.
The flowering mutant dn in sweet pea was used as a tool to study14C-assimilate and dry matter partitioning with respect to nutrientdiversion theories on the control of flower initiation. Wildtype plants (Dnh) are photoperiodic and exhibit late floweringand profuse basal branching in short days while mutant plants(dn) are day neutral, early flowering and devoid of basal laterals.In short days, dn plants exported a significantly greater proportionof assimilate acropetally than (Dnh) plants and the upper portionof dn plants had a greater dry weight. These differences werereduced dramatically when basal laterals were excised regularlyfrom the (Dnh) plants although the difference in flowering remained.However, the effect of dn on resource allocation within theapical region may be more important in regard to flowering thanthe effect on acropetal versus basipetal movement. In shortdays, the dn plants partitioned significantly more resourcesinto their internodes and petioles, and less into their leaflets,than Dnh plants as shown by dry weight and 14C-assimilate measurements.These differences were apparent from as early as node 7 up tothe node of flower initiation in dn plants (node 30) and theywere not eliminated by removal of basal laterals from Dnh plants.Differences between dn and Dnh plants in partitioning and floweringwere largely eliminated under long days. The fact that in thisspecies a single gene influences both resource allocation andflower initiation lends further support to nutrient diversionhypotheses on the control of flowering. Key words: Assimilate partitioning, branching, flowering, mutant, sweet pea  相似文献   

16.
Flowering of seedlings of Pharbitis nil, strains Violet andTendan, cultured in modified White's medium, was promoted bymedium dilution, the critical dark period being shortened byabout 15 min. Dilution of the N source alone was enough to causethe medium-dilution effect. Dilution of the culture medium duringthe day before and on the day of exposure to the dark-period(a total of two days) caused the maximum dilution effect. TheC and N contents of the cotyledons and of the shoot apices changedrapidly in response to medium dilution. In 1/2-strength White'smedium with 1/1,000 strength NO3 which was most effectivefor flower promotion, the C-N ratio was highest. In 1/2-strengthmodified White's medium, in which flowering was lowest withthe longest critical dark period, the C-N ratio was lowest.Thus, there is a close relation between flowering response andthe C-N ratio in cotyledons or shoot apices of Pharbitis nil. (Received September 14, 1984; Accepted January 26, 1985)  相似文献   

17.
Movement of 14C-assimilates from young and mature leaves to young rose shoots (Rosa hybrida cv. Marimba) was examined in two developmental stages. In the first stage after bud breaking the young shoot, especially its tip, depends for its supply of assimilates mainly on the mature foliage. At this stage young leaves are powerful sinks and retain 97% of their own photosynthates. The translocated 3% move mainly to the roots. At a later stage, just after the appearance of the flower bud, most of the leaves on the shoot become a source. The upper leaves supply assimilates to the flower bud and to the upper part of the stem. The 14C-assimilates from the lower leaves move in two directions, the larger part being directed downward.  相似文献   

18.
Non-dormant flower initials are laid down in the axils of successiveleaf initials as they are formed by the apical meristem of Pisumsativum L. In cultivars with a maximum capability of two flowersper raceme, the undeveloped flower meristem divides into twoportions. One forms the first flower and the other either developsinto a small protrusion on one side of the first flower or becomesthe second flower, depending on the prevailing environment.Flower development in conditions favouring single-flowered racemeswas advanced by one plastochron. Variation in the number offlowers per raceme occurs between cultivars and between environments.The number of double flowers formed was favoured by higher lightintensity (120 Js–1 m–2) and carbon dioxide concentration(330 µ11) and lower temperature (15°C). Incultivars producing more than two flowers per raceme, lowerlight intensity (60 Js–1 m–2) plus higher temperature(20°C) increased the mean number of flowers per raceme.Soluble sugar levels in all varieties were higher (36.05 mgeq glucose g–1 fresh weight) in the low temperature/highlight environment than the high temperature/low light environment(14.80 mg eq glucose g–1 fresh weight). The flowering potential and stability of 13 cultivars have beenassessed in controlled environment and in sowing date trialsin the field. A stable variety, which consistently producedtwo flowers per raceme, was identified in controlled environmentand its stability was maintained in field trials. A linear regressionof stability of flower number in the field on stability in controlledenvironment accounted for 89.6 per cent of the variance (P<5per cent), but the flowering potential in a sowing date experimentwas not related to temperature or radiation intensity.  相似文献   

19.
准噶尔无叶豆的开花物候与生殖特征   总被引:9,自引:1,他引:9       下载免费PDF全文
 为了研究沙漠稀有植物准噶尔无叶豆(Eremosparton songoricum)的开花物候特征及其对生殖成功的影响, 2005和2006年连续两年对其自然种群的开花物候和开花过程中的花部表型变化进行了观察, 并运用相对开花振幅、开花强度和开花同步性等开花物候指数研究了开花物候特征。结果表明: 准噶尔无叶豆在5月下旬至6月中下旬开花, 其种群、个体、花序和单花的花期分别历时26~29 d、8~10 d、5~7 d和2~3 d。单花开花进程依其形态和散粉特征可分为散粉前期、散粉初期、散粉盛期和凋谢期4个时期。其个体水平的开花物候进程(开花振幅曲线)呈渐进式单峰曲线, 具有很高的开花同步指数, 表现出一种集中开花的模式。开花物候指数与座果数之间的相关分析结果表明, 始花日期与花期持续时间存在负相关关系, 而与开花数和座果数存在正相关关系; 花期持续时间与开花数和座果数存在显著正相关关系。准噶尔无叶豆个体开花物候在很大程度上是由其遗传因子决定的, 而开花物候在年度间的变异, 可能是由于荒漠气候的差异(主要是水分和温度的差异)所引起的。作为沙漠窄域分布特有种, 准噶尔无叶豆在环境和人为干扰的双重选择压力下, 为了吸引更多的传粉者访问而达到生殖成功, 形成了大量集中开花的模式。  相似文献   

20.
At Ruiru, Kenya, 14CO2 was fed to single leaves at different distances from the apex on branches of mature fruiting and non-fruiting trees of Coffea arabica on six occasions from the Short Rains (November) 1966 to the Long Rains (April-May) 1967. The location of 14C-labelled assimilates in the treated branches was determined 26 h later by autoradiography. The direction of movement of labelled assimilates indicated large seasonal differences in the relative sink strengths of the shoot tip, fruit and trunk-root systems. On vegetative trees the sink strength of trunk-roots was much smaller, as compared with the shoots, at the beginning of the Long Rains than at the end of the previous Short Rains or in the intervening dry season. Assimilate use by growing fruits did not alter the pattern of distribution of assimilates to the other sinks at the end of the Short Rains, but it did restrict assimilate movement to both shoot tips and trunk-roots at the_ beginning of the Long Rains. In the dry season, virtually all assimilates were utilized by growing fruits when these were present. Vegetative secondary shoots provided assimilates to growing fruits and trunk-roots at the end of the Short Rains and in the dry season. Some practical implications are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号