首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the first Chinese Caloneurodea, Sinaspidoneura magnifica nov. gen., nov. sp., from the middle Permian Yinping Formation. This new genus and species belongs to the small family Aspidoneuridae, previously known from two genera and species, one from the latest Carboniferous of France and another from the late early Permian of North America. This discovery shows that this order was more widespread during the middle Permian than previously supposed, under a great variety of palaeoclimates. This clade is still unknown in the late Permian, and possibly became extinct because of the crisis of biodiversity that happened at the end of the middle Permian.  相似文献   

2.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria. We hereby propose that this strain be designatedAlkalobacter lublini gen. nov., sp. nov.  相似文献   

3.
4.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition, molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other extant methylotroph genera. Received: 19 July 1996 / Accepted: 7 October 1996  相似文献   

5.
6.
Two bacterial strains, KIS66-7T and 5GH26-15T, were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7T had the highest similarities with those of Labedella gwakjiensis KSW2-17T (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2SbT (97.2%), Leifsonia naganoensis JCM 10592T (97.0%), and Cryobacterium mesophilum MSL-15T (97.0%). Strain 5GH26-15T showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7T exhibited 96.4% similarity with that from 5GH26-15T. Strain KIS66-7T contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C15:0, ai-C17:0, and i-C16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C15:0, i-C16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7T and 5GH26-15T represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7T=KACC 15515T=NBRC 108724T) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15T=KACC 15524T=NBRC 108755T) within the family Microbacteriaceae.  相似文献   

7.
8.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

9.
A dissimilatory Fe(III)-reducing bacterium was isolated from mining-impacted lake sediments and designated strain CdA-1. The strain was isolated from a 4-month enrichment culture with acetate and Fe(III)-oxyhydroxide. Strain CdA-1 is a motile, obligately anaerobic rod, capable of coupling the oxidation of acetate and other organic acids to the reduction of ferric iron. Fe(III) reduction was not observed using methanol, ethanol, isopropanol, propionate, succinate, fumarate, H2, citrate, glucose, or phenol as potential electron donors. With acetate as an electron donor, strain CdA-1 also grew by reducing nitrate or fumarate. Growth was not observed with acetate as electron donor and O2, sulfoxyanions, nitrite, trimethylamine N-oxide, Mn(IV), As(V), or Se(VI) as potential terminal electron acceptors. Comparative 16 S rRNA gene sequence analyses show strain CdA-1 to be most closely related (93.6% sequence similarity) to Rhodocyclus tenuis. However, R. tenuis did not grow heterotrophically by Fe(III) reduction, nor did strain CdA-1 grow photrophically. We propose that strain CdA-1 represents a new genus and species, Ferribacterium limneticum. Strain CdA-1 represents the first dissimilatory Fe(III) reducer in the β subclass of Proteobacteria, as well as the first Fe(III) reducer isolated from mine wastes. Received: 14 July 1998 / Accepted: 14 December 1998  相似文献   

10.
A taxonomic study was carried out on Chj404T, a bacterial strain isolated from a soil sample collected in an industrial stream near the Chung-Ju industrial complex in Korea. The strain was a gram-negative, aerobic, short rod to coccus-shaped bacterium. It grew well on nutrient agar medium and utilized a broad spectrum of carbon sources. The G+C content of the DNA was 67.4 mol% and the major composition of ubiquinone was Q-10. The major fatty acid was C18:1. Comparative 16S rDNA studies showed a clear affiliation of this bacterium to alpha-Proteobacteria. Comparison of phylogenetic data indicated that it was most closely related to Prosthecomicrobium pneumaticum (92.7% similarity in 16S rDNA sequence). Since strain Chj404 is clearly distinct from closely related species, we propose the name Kaistia adipata gen. nov., sp. nov. for this strain Chj404T (=IAM 15023T=KCTC 12095T).  相似文献   

11.
Phenotypic and phylogenetic studies were performed on an unidentified Gram-positive, strictly anaerobic, non-spore-forming, rod-shaped bacterium isolated from human feces. The organism was catalase-negative, resistant to 20% bile, produced acetic and butyric acids as end products of glucose metabolism, and possessed a G+C content of approximately 70 mol%. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was a member of the Clostridium sub-phylum of the Gram-positive bacteria, and formed a loose association with rRNA cluster XV. Sequence divergence values of 12% or greater were observed between the unidentified bacterium and all other recognized species within this and related rRNA clusters. Treeing analysis showed the unknown anaerobe formed a deep line branching near to the base of rRNA cluster XV and phylogenetically represents a hitherto unknown taxon, distinct from Acetobacterium, Eubacterium sensu stricto, Pseudoramibacter and other related organisms. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from feces be classified in a new genus Anaerofustis, as Anaerofustis stercorihominis sp. nov. The type strain of Anaerofustis stercorihominis is ATCC BAA-858(T)=CCUG 47767(T).  相似文献   

12.
Two Gram-positive bacteria, designated strains Aji5-31(T) and Ngc37-23(T), were isolated from the intestinal tracts of fishes. 16S rRNA gene sequence analysis indicated that both strains were related to the members of the family Dermatophilaceae, with 95.6-96.9% 16S rRNA gene sequence similarities. The family Dermatophilaceae contains 2 genera and 3 species: Dermatophilus congolensis, Dermatophilus chelonae and Kineosphaera limosa. However, it has been suggested that the taxonomic position of D. chelonae should be reinvestigated using a polyphasic approach, because the chemotaxonomic characteristics are not known (Stackebrandt, 2006; Stackebrandt and Schumann, 2000). Our present study revealed that strains Aji5-31(T), Ngc37-23(T) and D. chelonae NBRC 105200(T) should be separated from the other members of the family Dermatophilaceae on the basis of the following characteristics: the predominant menaquinone of strain Aji5-31(T) is MK-8(H(2)), strain Ngc37-23(T) possesses iso- branched fatty acids as major components, and the menaquinone composition of D. chelonae is MK-8(H(4)), MK-8 and MK-8(H(2)) (5 : 3 : 2, respectively). On the basis of these distinctive phenotypic characteristics and phylogenetic analysis results, it is proposed that strains Aji5-31(T) and Ngc37-23(T) be classified as two novel genera and species of the family Dermatophilaceae. The names are Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., and the type strains are Aji5-31(T) (=NBRC 104925(T) =DSM 22762(T)) and Ngc37-23(T) (=NBRC 104926(T) =DSM 22761(T)), respectively. In addition, D. chelonae should be reassigned to a new genus of the family Dermatophilaceae with the name Austwickia chelonae gen. nov., comb. nov.  相似文献   

13.
Morphological, biochemical, and molecular genetic studies were performed on an unknown anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from dog feces. The unknown bacterium was tentatively identified as a Eubacterium species, based on cellular morphological and biochemical tests. 16S rRNA gene sequencing studies, however, revealed that it was phylogenetically distant from Eubacterium limosum, the type species of the genus Eubacterium. Phylogenetically, the unknown species forms a hitherto unknown sub-line proximal to the base of a cluster of organisms (designated rRNA cluster XVI), which includes Clostridium innocuum, Streptococcus pleomorphus, and some Eubacterium species. Based on both phenotypic and phylogenetic criteria, it is proposed that the unknown bacterium be classified as a new genus and species, Allobaculum stercoricanis. Using a specific rRNA-targeted probe designed to identify Allobaculum stercoricanis, in situ hybridisation showed this novel species represents a significant organism in canine feces comprising between 0.1% and 3.7% of total cells stained with DAPI (21 dog fecal samples). The type strain of Allobaculum stercoricanis is DSM 13633(T)=CCUG 45212(T).  相似文献   

14.
A novel Gram-stain-negative, rod-to-spiral-shaped, oxidase- and catalase- positive and facultatively aerobic bacterium, designated HS6T, was isolated from marine sediment of Yellow Sea, China. It can reduce nitrate to nitrite and grow well in marine broth 2216 (MB, Hope Biol-Technology Co., Ltd) with an optimal temperature for growth of 30–33 °C (range 12–45 °C) and in the presence of 2–3 % (w/v) NaCl (range 0.5–7 %, w/v). The pH range for growth was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel isolate was 93.3 % similar to the type strain of Neptunomonas antarctica, 93.2 % to Neptunomonas japonicum and 93.1 % to Marinobacterium rhizophilum, the closest cultivated relatives. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and some other unknown lipids. Major cellular fatty acids were summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH), C18:1 ω7c and C16:0 and the main respiratory quinone was Q-8. The DNA G+C content of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical characteristics, strain HS6T represents a novel genus and species and the name Motiliproteus sediminis gen. nov., sp. nov., is proposed. The type strain is HS6T (=ATCC BAA-2613T=CICC 10858T).  相似文献   

15.
Phenotypic and chemotaxonomic characteristics of five isolates of acetylenereducing (nitrogen-fixing) oligotrophic bacteria from a paddy soil were investigated. They showed similar phenotypic characteristics: they were aerobic, asporogenous, gram-negative, motile by a polar flagellum, and irregular rods. On full strength nutrient broth (NB) growth was severely suppressed, but well supported on 10-to 10000-fold diluted NB. They consumed glucose but produced no acid, and also utilized phenolic acids such as ferulic acid or p-coumaric acid. The cellular fatty acid composition, quinone system and DNA base composition of the isolates were investigated. Cellular fatty acids mainly consisted of straightchain unsaturated C18 : 1 (62–81% of total fatty acids). Ubiquinone Q-10 and a high guanine-plus-cytosine content (65.1–66.0 mol%) were found. The taxonomic status of the isolates is discussed and a new genus, Agromonas, with a single species Agromonas oligotrophica sp. nov., is proposed for these isolates. The type strain of A. oligotrophica is JCM 1494.  相似文献   

16.
Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.  相似文献   

17.
18.
19.
A bacterial strain, designated JS5-2T, was isolated from soil collected from Jeju Island, Republic of Korea. The cells of the strain were Gram-negative, nonspore forming, catalase- and oxidase-positive, aerobic, nonmotile and rod-shaped. Strain JS5-2T exhibited 96.2–97.2, 95.1–96.3, and 95.4–95.8% 16S rRNA gene sequence similarities to the genera Herbaspirillum, Oxalicibacterium, and Herminiimonas, respectively. The highest sequence similarities were with Herbaspirillum autotrophicum IAM 14942T (97.2%) and Herbaspirillum frisingense GSF30T (97.1%). The major fatty acids of strain JS5-2T were C16:0 (35.0%), C17:0 cyclo (19.9%), C18:1 ω7c (11.4%), and summed feature 3 (C16:1 ω7c/C15:0 iso 2-OH) (15.2%), and the major polar lipids of strain JS5-2T were diphosphatidylglycerol and an unknown aminophospholipid. The strain contained Q-8 as the predominant ubiquinone. DNA-DNA relatedness values between strain JS5-2T and H. autotrophicum IAM 14942T, and H. frisingense GSF30T were 32 and 35%, respectively. The DNA G+C content of strain JS5-2T was 59.0 mol%. On the basis of phenotypic, genotypic, and physiological evidence, strain JS5-2T represents a novel species of a new genus, for which the name Paraherbaspirillum soli gen. nov., sp. nov. is proposed. The type strain JS5-2T (=KACC 12633T =NBRC 106496T) is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号