首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that a nanometer-diameter pore in a nanometer-thick metal-oxide-semiconductor-compatible membrane can be used as a molecular sensor for detecting DNA. The prospects for using this type of device for sequencing DNA are avidly being pursued. The key attribute of the sensor is the electric field-induced (voltage-driven) translocation of the DNA molecule in an electrolytic solution across the membrane through the nanopore. To complement ongoing experimental studies developing such pores and measuring signals in response to the presence of DNA, we conducted molecular dynamics simulations of DNA translocation through the nanopore. A typical simulated system included a patch of a silicon nitride membrane dividing water solution of potassium chloride into two compartments connected by the nanopore. External electrical fields induced capturing of the DNA molecules by the pore from the solution and subsequent translocation. Molecular dynamics simulations suggest that 20-basepair segments of double-stranded DNA can transit a nanopore of 2.2 x 2.6 nm(2) cross section in a few microseconds at typical electrical fields. Hydrophobic interactions between DNA bases and the pore surface can slow down translocation of single-stranded DNA and might favor unzipping of double-stranded DNA inside the pore. DNA occluding the pore mouth blocks the electrolytic current through the pore; these current blockades were found to have the same magnitude as the blockade observed when DNA transits the pore. The feasibility of using molecular dynamics simulations to relate the level of the blocked ionic current to the sequence of DNA was investigated.  相似文献   

2.
A growing number of new technologies are supported by a single- or multi-nanopore architecture for capture, sensing, and delivery of polymeric biomolecules. Nanopore-based single-molecule DNA sequencing is the premier example. This method relies on the uniform linear charge density of DNA, so that each DNA strand is overwhelmingly likely to pass through the nanopore and across the separating membrane. For disordered peptides, folded proteins, or block copolymers with heterogeneous charge densities, by contrast, translocation is not assured, and additional strategies to monitor the progress of the polymer molecule through a nanopore are required. Here, we demonstrate a single-molecule method for direct, model-free, real-time monitoring of the translocation of a disordered, heterogeneously charged polypeptide through a nanopore. The crucial elements are two “selectivity tags”—regions of different but uniform charge density—at the ends of the polypeptide. These affect the selectivity of the nanopore differently and enable discrimination between polypeptide translocation and retraction. Our results demonstrate exquisite sensitivity of polypeptide translocation to applied transmembrane potential and prove the principle that nanopore selectivity reports on biopolymer substructure. We anticipate that the selectivity tag technique will be broadly applicable to nanopore-based protein detection, analysis, and separation technologies, and to the elucidation of protein translocation processes in normal cellular function and in disease.  相似文献   

3.
The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties.  相似文献   

4.
Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of this method to differentiate among native and untethered proteins of the same mass.  相似文献   

5.
Solid-state nanopores have received increasing interest over recent years because of their potential for genomic screening and sequencing. In particular, small nanopores (2-5 nm in diameter) allow the detection of local structure along biological molecules, such as proteins bound to DNA or possibly the secondary structure of RNA molecules. In a typical experiment, individual molecules are translocated through a single nanopore, thereby causing a small deviation in the ionic conductance. A correct interpretation of these conductance changes is essential for our understanding of the process of translocation, and for further sophistication of this technique. Here, we present translocation measurements of double-stranded DNA through nanopores down to the diameter of the DNA itself (1.8-7 nm at the narrowest constriction). In contrast to previous findings on such small nanopores, we find that single molecules interacting with these pores can cause three distinct levels of conductance blockades. We attribute the smallest conductance blockades to molecules that briefly skim the nanopore entrance without translocating, the intermediate level of conductance blockade to regular head-to-tail translocations, and the largest conductance blockades to obstruction of the nanopore entrance by one or multiple (duplex) DNA strands. Our measurements are an important step toward understanding the conductance blockade of biomolecules in such small nanopores, which will be essential for future applications involving solid-state nanopores.  相似文献   

6.
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.  相似文献   

7.
《Biophysical journal》2020,118(7):1612-1620
Electrokinetic translocation of biomolecules through solid-state nanopores represents a label-free single-molecule technique that may be used to measure biomolecular structure and dynamics. Recent investigations have attempted to distinguish individual transfer RNA (tRNA) species based on the associated pore translocation times, ion-current noise, and blockage currents. By manufacturing sufficiently smaller pores, each tRNA is required to undergo a deformation to translocate. Accordingly, differences in nanopore translocation times and distributions may be used to infer the mechanical properties of individual tRNA molecules. To bridge our understanding of tRNA structural dynamics and nanopore measurements, we apply molecular dynamics simulations using a simplified “structure-based” energetic model. Calculating the free-energy landscape for distinct tRNA species implicates transient unfolding of the terminal RNA helix during nanopore translocation. This provides a structural and energetic framework for interpreting current experiments, which can aid the design of methods for identifying macromolecules using nanopores.  相似文献   

8.
Nanopores have become an important tool for molecule detection at single molecular level. With the development of fabrication technology, synthesized solid-state membranes are promising candidate substrates in respect of their exceptional robustness and controllable size and shape. Here, a 30–60 (tip-base) nm conical nanopore fabricated in 100 nm thick silicon nitride (Si3N4) membrane by focused ion beam (FIB) has been employed for the analysis of λ-DNA translocations at different voltage biases from 200 to 450 mV. The distributions of translocation time and current blockage, as well as the events frequencies as a function of voltage are investigated. Similar to previously published work, the presence and configurations of λ-DNA molecules are characterized, also, we find that greater applied voltages markedly increase the events rate, and stretch the coiled λ-DNA molecules into linear form. However, compared to 6–30 nm ultrathin solid-state nanopores, a threshold voltage of 181 mV is found to be necessary to drive DNA molecules through the nanopore due to conical shape and length of the pore. The speed is slowed down ∼5 times, while the capture radius is ∼2 fold larger. The results show that the large nanopore in thick membrane with an improved stability and throughput also has the ability to detect the molecules at a single molecular level, as well as slows down the velocity of molecules passing through the pore. This work will provide more motivations for the development of nanopores as a Multi-functional sensor for a wide range of biopolymers and nano materials.  相似文献   

9.
Functionalizing surface enhanced the molecular sensing ability of a fabricated nanopore by increasing the translocation duration time for a short double-stranded DNA. The surface of nanopore was derivatized with γ-aminopropyltriethoxysilane and the positively charged surface attracted DNA molecules when they were in the vicinity of nanopore. The translocation duration time of DNA increased due to the strong electrostatic interaction and it enabled us to detect a short double-stranded DNA (<1 kbp) that is under the size limit of a conventional solid state nanopore sensor. Both 539 and 910 bp double-stranded DNAs were analyzed with the surface functionalized nanopore and their translocation kinetics are presented in this work. The new feature of the surface modified nanopore that can detect short double-stranded DNA molecules could readily be applied for a rapid label-free diagnostic analysis in a Lab-On-a-Chip type DNA sensor.  相似文献   

10.
随着高通量测序技术的不断更新,可以在单个分子水平读取核苷酸序列的第三代测序技术迅速发展,纳米孔测序技术是其具有代表性的单分子测序技术,该技术通过检测DNA单链分子穿过纳米孔时引起的跨膜电流信号的变化,实现碱基识别.纳米孔测序仪在便携性、碱基读取速度、测序读段长度等方面较传统的第一代与第二代测序技术都有明显优势.随着纳米...  相似文献   

11.
Graphene-based nanopore devices hold great promise for the next generation DNA sequencing because graphene is atomically thin which is extremely important for single base recognition. To understand the fundamental details of DNA translocation through a graphene nanopore, in this work, molecular dynamics simulations of ssDNA translocation through the nanopore were performed to trace the nucleobase trajectories and to investigate the impact of the number of layers of the graphene membrane and the electrical field on ssDNA translocation. We found that the velocity of ssDNA translocation was speeded up with the higher bias voltage, and the two-layered and five-layered graphene membrane with 1.0-nm diameter circular nanopore could discern different DNA strand by the translocation time.  相似文献   

12.
Engineered protein nanopores, such as those based on α-hemolysin from Staphylococcus aureus have shown great promise as components of next-generation DNA sequencing devices. However, before such protein nanopores can be used to their full potential, the conformational dynamics and translocation pathway of the DNA within them must be characterized at the individual molecule level. Here, we employ atomistic molecular dynamics simulations of single-stranded DNA movement through a model α-hemolysin pore under an applied electric field. The simulations enable characterization of the conformations adopted by single-stranded DNA, and allow exploration of how the conformations may impact on translocation within the wild-type model pore and a number of mutants. Our results show that specific interactions between the protein nanopore and the DNA can have a significant impact on the DNA conformation often leading to localized coiling, which in turn, can alter the order in which the DNA bases exit the nanopore. Thus, our simulations show that strategies to control the conformation of DNA within a protein nanopore would be a distinct advantage for the purposes of DNA sequencing.  相似文献   

13.
Rho termination factor is an essential hexameric helicase responsible for terminating 20-50% of all mRNA synthesis in Escherichia coli. We used single-molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho utilization site of the λtR1 terminator. Our results are consistent with Rho complexes adopting two states: one that binds 57 ± 2 nt of RNA across all six of the Rho primary binding sites, and another that binds 85 ± 2 nt at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′ → 3′ toward RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the Rho utilization site and RNAP. These findings lead to a general model for Rho binding and translocation and establish a novel experimental approach that should facilitate additional single-molecule studies of RNA-binding proteins.  相似文献   

14.
The water-soluble Dictyophora indusiata polysaccharides (DIP) were extracted from the fruiting body of D. indusiata. The structural features of purified DIPs I and II were investigated. The results indicated that DIP I was composed of glucose (Glc) and mannose (Man) with molecular weight of 2100 kDa, while DIP II comprised of xylose (Xyl), galactose (Gal), glucose (Glc) and Man with molecular weight of 18.16 kDa. The glycosidic linkage of DIP I was composed of →1)-Glc-(6→: →1)-Man-(3,6→ with the ratio of 5.6:1.0, while DIP II was composed of →1)-Glc-(6→: →1)-Man-(3,6→: →1)-Xyl-(5→: →1)-Gal-(3→: →1)-Gal-(6→: with the ratio of 4.9: 15.5: 7.8: 1.0: 5.7. DIP significantly (P < 0.05) decreased the malondialdehyde (MDA), lipofuscin levels and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities of mice. The strong in vivo antioxidant activity indicated DIP had great potential as functional food.  相似文献   

15.
DNA sequencing using nanopores has already been achieved and commercialized; the next step in advancing nanopore technology is towards protein sequencing. Although trials have been reported for discriminating the 20 amino acids using biological nanopores and short peptide carriers, it remains challenging. The size compatibility between nanopores and peptides is one of the issues to be addressed. Therefore, exploring biological nanopores that are suitable for peptide sensing is key in achieving amino acid sequence determination. Here, we focus on EXP2, the transmembrane protein of a translocon from malaria parasites, and describe its pore-forming properties in the lipid bilayer. EXP2 mainly formed a nanopore with a diameter of 2.5 nm assembled from 7 monomers. Using the EXP2 nanopore allowed us to detect poly-L-lysine (PLL) at a single-molecule level. Furthermore, the EXP2 nanopore has sufficient resolution to distinguish the difference in molecular weight between two individual PLL, long PLL (Mw: 30,000–70,000) and short PLL (Mw: 10,000). Our results contribute to the accumulation of information for peptide-detectable nanopores.  相似文献   

16.
Single nanopores have attracted interest for their use as biosensing devices. In general, methods involve measuring ionic current blockades associated with translocation of analytes through the nanopore, but the detection of such short time lasting events requires complex equipment and setup that are critical for convenient routine biosensing. Here we present a novel biosensing concept based on a single nanopore in a silicon nitride membrane and two anchor-linked DNA species that forms trans-pore hybrids, realizing a stable blockade of ionic current through the pore. Molecular recognition events affecting the DNA hybrids cause a pore opening and the consequent establishment of an ionic current. In the present implementation of the device, we constructed a magnetic bead/streptavidin/biotin-DNA1/DNA2-biotin/streptavidin/Quantumdot-cluster complex (where DNA1 is a mismatched reverse complement of DNA2) through a sub-micrometric pore and monitored DNA strand displacement events occurring after addition of an oligonucleotide complementary to DNA2. The electric and mechanical aspects of the novel device, as well as its potential in biosensing are discussed.  相似文献   

17.
Oligosaccharides synthesized from a mixture of maltoheptaose and [U-13C]maltose with transglucosidase [EC 2.4.1.24] from Aspergillus niger were investigated. When the reaction mixture was incubated at 15 °C for 1 h, several types of oligosaccharides with DP (degree of polymerization) 2 to DP8 containing α-d-Glcp-(1→6)-maltoheptaose were detected by liquid chromatography-mass spectrometry (LC-MS) and methylation analysis. Most of these compounds consisted of α-(1→4) linkages in the main chain and α-(1→6) linkages at the non-reducing ends. However, when the reaction mixture was incubated for 96 h, most of these products were converted into oligosaccharides with DP2 to DP5 consisting of only α-(1→6) linkages. These results suggested that A. niger transglucosidase rapidly transferred glucosyl residues to maltooligosaccharides, and gradually hydrolyzed both α-(1→4) linkages and α-(1→6) linkages at the non-reducing end, and transformed these into smaller molecules of mainly α-(1→6) linkages.  相似文献   

18.
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300 K and 1 bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles ? and ψ was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1→n)-linked disaccharides with n = 1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle ; gg or gt) states with a low interconversion barrier ((1→6)-linked disaccharides). Metastable (anti-? or anti-ψ) states are also identified with relative free energies in the range of 8-22 kJ mol−1. The 11 compounds can be classified into four families: (i) the α(1→1)α-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four α(1→n)-linked disaccharides (n = 1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-ψ) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four β(1→n)-linked disaccharides (n = 1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-? and anti-ψ) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1→6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-?) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: ∼30 ps (hydroxyl groups), ∼1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angle in (1→6)-linked disaccharides), ∼10 ns to 2 μs (ring conformation, glycosidic dihedral angles ? and ψ). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed.  相似文献   

19.
N-linked oligosaccharides often act as ligands for receptor proteins in a variety of cell recognition processes. Knowledge of the solution conformations, as well as protein-bound conformations, of these oligosaccharides is required to understand these important interactions. In this paper we present a model for the solution conformations sampled by a simple trimannoside, methyl 3, 6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, which contains two of the most commonly found glycosidic linkages in N-linked oligosaccharides. This model was derived from simulated annealing protocols incorporating distance restraints extracted from NOESY spectra along with torsional restraints computed from three-bond (1)H-(13)C coupling constants measured across the glycosidic bonds. The model was refined in light of unrestrained molecular dynamics simulations conducted in the presence of solvent water. The resulting model depicts a molecule undergoing conformational averaging in solution, adopting four major and two minor conformations. The four major conformations arise from a pair of two-state transitions, one each at the alpha(1-->3) and alpha(1-->6) linkages, whereas the minor conformations result from an additional transition of the alpha(1-->6) linkage. Our data also suggest that the alpha(1-->3) transition is fast and changes the molecular shape slightly, whereas the alpha(1-->6) is much slower and alters the molecular shape dramatically.  相似文献   

20.
Glucansucrases are responsible for the production of α-glucans using sucrose as the substrate. Glucansucrases may also produce different oligosaccharides by transferring the glucose moiety from sucrose to a variety carbohydrates acting as acceptor nucleophile. In this study, melibiose-derived oligosaccharides were produced by the glucansucrase from Lactobacillus reuteri E81 expressed without the N-terminal region (GtfA-ΔN). The reaction products were characterized by TLC, LC-MS and NMR analysis and it was found that GtfA-ΔN synthesized melibiose-derived oligosaccharides (DP3 and DP4) by adding glucose units through alpha 1->3 or 1->6 glycosidic bond. The functional characteristics of these melibiose-derived oligosaccharides were determined by testing the immune-modulatory functions in HT-29 cells and testing their growth promoting effects for important probiotic and pathogenic strains. The melibiose-derived oligosaccharides triggered the production of anti-inflammatory cytokine IL-10 and pro-inflammatory cytokine TNF-α depending on their concentrations. Finally, melibiose-derived oligosaccharides showed bifidogenic effect as potential prebiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号