首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-binding cassette transporter A1 (ABCA1) was recently recognized as the mutant molecule responsible for Tangier disease with low HDL levels, accumulation of cholesteryl esters in tissues, and increased risk of cardiovascular disease. Extensive studies for the past 2 years have recognized the critical role of ABCA1 in cholesterol and phospholipid trafficking. Since the removal of cholesterol from tissues is a key step in the prevention of atherosclerosis, significant attention has been focused on this molecule. Natural ABCA1 mutations in Tangier disease (TD) patients and WHAM chickens together with induced mutation in ABCA1 knock-out mice unequivocally established the important role of ABCA1 in maintaining circulating HDL levels and promoting cholesterol efflux from the arterial wall. Mice lacking ABCA1 showed similar phenotypes observed in Tangier disease patients with low levels of HDL. Further understanding of the roles of ABCA1 in lipid transport and atherosclerosis became clear from studies with ABCA1 transgenic mice. These mice showed enhanced cholesterol efflux from macrophages and reduced atherosclerotic lesion formation. The promoter of the ABCA1 gene has been mapped to a large extent, with the exception of cAMP response element. The present review summarizes recent developments on the role of ABCA1 in cholesterol efflux and prevention of atherosclerosis. Given the antiatherogenic properties of ABCA1, this molecule can serve as an appropriate target for developing drugs to treat individuals with low levels of HDL.  相似文献   

2.
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.  相似文献   

3.
4.
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.  相似文献   

5.
The accumulation of lipoprotein cholesterol in theartery wall is thought to be an important factor in thedevelopment of atherosclerosis. After retentionand modi-fication in arteries, atherogenic lipoproteins are taken upby macrophages, bringing about macrophage-derived foamcells. High-density lipoprotein (HDL) plays a role in trans-porting cholesterol from peripheral tissues to the liver.The elevated level of HDL is associated with a decreasein atherosclerosis and the apolipoproteins to remo…  相似文献   

6.
HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice.  相似文献   

7.
以THP 1巨噬细胞源性泡沫细胞为研究对象 ,观察油酸对THP 1巨噬细胞源性泡沫细胞胆固醇流出和三磷酸腺苷结合盒转运体A1(ABCA1)表达的影响 ,以探讨油酸对动脉粥样硬化发生发展的影响。用液体闪烁计数器检测细胞内胆固醇流出 ,高效液相色谱分析细胞内总胆固醇、游离胆固醇和胆固醇酯含量 ,运用逆转录多聚酶链反应和Western印迹分别检测ABCA1mRNA与ABCA1蛋白的表达 ,采用流式细胞术检测细胞平均ABCA1荧光强度。实验显示油酸引起THP 1巨噬细胞源性泡沫细胞总胆固醇、游离胆固醇与胆固醇酯呈时间依赖性增加 ,而ABCA1蛋白水平、细胞平均ABCA1荧光强度以及apoA I介导的胆固醇流出呈时间依赖性减少 ,细胞内胆固醇增多 ,但ABCA1mRNA没有明显变化。结果表明 ,油酸减少THP 1巨噬细胞源性泡沫细胞ABCA1蛋白水平 ,降低细胞内胆固醇流出 ,增加细胞内胆固醇聚积。  相似文献   

8.
9.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

10.
Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)−/− mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.  相似文献   

11.
Stearoyl-coenzyme A desaturase 1 (SCD1) is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. However, the impact of SCD1 on atherosclerosis remains unclear. The aim of this study was to determine whether SCD1 affects macrophage reverse cholesterol transport (RCT) in mice. Compared to the control, adenoviral-mediated SCD1 overexpression in RAW264.7 macrophages increased cholesterol efflux to HDL, but not to apoA-I, without clear changes in ABCA1, ABCG1 and SR-BI expressions. While knockdown of ABCG1 and SR-BI did not affect the SCD1-induced cholesterol efflux to HDL, SCD1-overexpressing macrophages promoted the formation of both normal- and large-sized HDL in media, accompanying increased apolipoprotein A-I levels in HDL fractions. Transformation to larger particles of HDL was independently confirmed by nuclear magnetic resonance-based lipoprotein analysis. Interestingly, media transfer assays revealed that HDL generated by SCD1 had enhanced cholesterol efflux potential, indicating that SCD1 transformed HDL to a more anti-atherogenic phenotype. To study macrophage RCT in vivo, 3H-cholesterol-labeled RAW264.7 cells overexpressing SCD1 or the control were intraperitoneally injected into mice. Supporting the in vitro data, injection of SCD1-macrophages resulted in significant increases in 3H-tracer in plasma, liver, and feces compared to the control. Moreover, there was a shift towards larger particles in the 3H-tracer distribution of HDL fractions obtained from the mice.  相似文献   

12.
ATP-binding cassette transporter A1 (ABCA1) modulates plasma levels of high density lipoprotein (HDL), a cardiovascular protecting factor. Tree shrew was considered to be an animal protected from atherosclerosis characterized by high proportion of HDL in plasma. The cDNA clones and expression of tree shrew ABCA1 was identified using SMART-RACE and Real-Time PCR techniques respectively. The nucleotide sequence of tree shrew ABCA1 covered 7,762 bp, including a 6,786 bp coding region which encoded a 2,261 amino acids protein with the high identity to human ABCA1 (95%). Tree shrew ABCA1 was expressed in various tissues, the highest in lung, followed by liver, kidney, spleen and cardiac muscle in turn from high to medium expression levels. This pattern was partially different from that of human ABCA1 which was low in kidney and cardiac muscle. This work could shed new light on its role of ABCA1 in the distinctive HDL metabolism in tree shrew.  相似文献   

13.
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.  相似文献   

14.
ATP-binding cassette transporter-1 (ABCA1) gene is mutated in patients with familial high-density lipoprotein deficiency (FHD). In order to know the molecular basis for FHD, we characterized three different ABCA1 mutations associated with FHD (G1158A/A255T, C5946T/R1851X, and A5226G/N1611D) with respect to their expression in the passaged fibroblasts from the patients and in the cells transfected with the mutated cDNAs. Fibroblasts from the all patients showed markedly decreased cholesterol efflux to apolipoprotein (apo)-Al. In the fibroblasts homozygous for G1158A/A255T, the immunoreactive mass of ABCA1 could not be detected, even when stimulated by 9-cis-retinoic acid and 22-R-hydroxycholesterol. In the fibroblasts homozygous for C5946T/R1851X, ABCA1 mRNA was comparable. Because the mutant ABCA1 protein (R1851X) was predicted to lack the epitope for the antibody used, we transfected FLAG-tagged truncated mutant (R1851X/ABCA1-FLAG) cDNA into Cos-7 cells, showing that the mutant protein expression was markedly reduced. The expression of N1611D ABCA1 protein was comparable in both fibroblasts and overexpressing cells, although cholesterol efflux from the cells was markedly reduced. These data indicated that, in the three patients investigated, the abnormalities and dysfunction of ABCA1 occurred at the different levels, providing important information about the expression, regulation, and function of ABCA1.  相似文献   

15.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

16.

Objectives

The uptake of oxidized LDL (oxLDL) by macrophages is a key initial event in atherogenesis, and the removal of oxidized lipids from artery wall via reverse cholesterol transport is considered antiatherogenic. The aims of this study were to investigate the pathways mediating the removal of oxysterols from oxLDL-loaded macrophages, and the subsequent uptake of the oxysterols by hepatocytes.

Methods

LDL was labeled with [3H]cholesterol, and LDL-[3H]cholesterol was oxidized by copper using a standard method. [3H]oxysterol formation in oxLDL was analyzed by thin layer chromatography. oxLDL-[3H]sterol was incubated with macrophages, allowing the uptake of [3H]sterol by macrophages. [3H]sterol efflux from macrophages mediated by ATP binding cassette transporters (ABCA1, ABCG1), or scavenger receptor class B type I (SR-BI) was measured. The subsequent uptake of the [3H]sterol by hepatocytes was also determined.

Results

7-Ketocholesterol was the major oxysterol formed in oxLDL, and it was significantly higher in oxLDL compared with that in native LDL (naLDL). oxLDL-derived sterol efflux to HDL from macrophages was significantly increased compared with naLDL-derived sterol, and it was mainly mediated by ABCG1, but not by ABCA1 or SR-BI. Moreover, although HDL dose-dependently induced sterol efflux from macrophages, only the exported sterol by ABCG1 pathway was efficiently taken up by hepatocytes.

Conclusions

ABCG1 mediates oxysterol efflux from oxLDL-loaded macrophages, and the exported oxysterol by ABCG1 pathway can be selectively taken up by hepatocytes.  相似文献   

17.
It is suggested that cholesterol efflux mediated by ATP binding cassette transporter A1 (ABCA1) plays an important role in anti-atherogenesis. However, the effects of inflammatory cytokines on ABCA1 expression and cholesterol accumulation in foam cells are little known. This study investigates the effects of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) on ABCA1 expression and cholesterol content in THP-1 macrophage-derived foam cells. ABCA1mRNA and protein levels were determined by RT-PCR and Western blot, respectively. The total cholesterol content in THP-1 macrophage-derived foam cells was detected by the zymochemistry method. Results revealed that TNF-alpha could increase cholesterol content by down-regulating ABCA1 expression in a time-dependent manner in THP-1 macrophage-derived foam cells, which may contribute to its pro-atherosclerotic effect. In addition IL-10 time-dependently decreased cholesterol accumulation by up-regulating ABCA1 expression and inhibited the down-regulation of ABCA1 by TNF-alpha in THP-1 macrophage-derived foam cells, which may be one of the mechanisms of IL-10 contributing to its anti-atherosclerotic action.  相似文献   

18.
The aim of this study is to investigate the capability of an apoA-I mimetic with multiple amphipathic helices to form HDL-like particles in vitro and in vivo. To generate multivalent helices and to track the peptide mimetic, we have constructed a peptibody by fusing two tandem repeats of 4F peptide to the C terminus of a murine IgG Fc fragment. The resultant peptidbody, mFc-2X4F, dose-dependently promoted cholesterol efflux in vitro, and the efflux potency was superior to monomeric 4F peptide. Like apoA-I, mFc-2X4F stabilized ABCA1 in J774A.1 and THP1 cells. The peptibody formed larger HDL particles when incubated with cultured cells compared with those by apoA-I. Interestingly, when administered to mice, mFc-2X4F increased both pre-β and α-1 HDL subfractions. The lipid-bound mFc-2X4F was mostly in the α-1 migrating subfraction. Most importantly, mFc-2X4F and apoA-I were found to coexist in the same HDL particles formed in vivo. These data suggest that the apoA-I mimetic peptibody is capable of mimicking apoA-I to generate HDL particles. The peptibody and apoA-I may work cooperatively to generate larger HDL particles in vivo, either at the cholesterol efflux stage and/or via fusion of HDL particles that were generated by the peptibody and apoA-I individually.  相似文献   

19.
This study uses the mouse to explore the role of ABCA1 in the movement of this cholesterol from the peripheral organs to the endocrine glands for hormone synthesis and liver for excretion. The sterol pool in all peripheral organs was constant and equaled 2,218 and 2,269 mg/kg, respectively, in abca1+/+ and abca1−/− mice. Flux of cholesterol from these tissues equaled the rate of synthesis plus the rate of LDL-cholesterol uptake and was 49.9 mg/day/kg in control animals and 62.0 mg/day/kg in abca1−/− mice. In the abca1+/+ animals, this amount of cholesterol moved from HDL into the liver for excretion. In the abca1−/− mice, the cholesterol from the periphery also reached the liver but did not use HDL. Fecal excretion of cholesterol was just as high in abac1−/− mice (198 mg/day/kg) as in the abac1+/+ animals (163 mg/day/kg), although the abac1−/− mice excreted relatively more neutral than acidic sterols. This study established that ABCA1 plays essentially no role in the turnover of cholesterol in peripheral organs or in the centripetal movement of this sterol to the endocrine glands, liver, and intestinal tract for excretion.  相似文献   

20.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号