首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Dystroglycan (α-DG) plays crucial roles in maintaining the stability of cells. We demonstrated previously that the N-terminal domain of α-DG (α-DG-N) is secreted by cultured cells into the culture medium. In the present study, to clarify its function in vivo, we generated a monoclonal antibody against α-DG-N and investigated the secretion of α-DG-N in human cerebrospinal fluid (CSF). Interestingly, we found that a considerable amount of α-DG-N was present in CSF. α-DG-N in CSF was a sialylated glycoprotein with both N- and O-linked glycan. These observations suggest that secreted α-DG-N may be transported via CSF and have yet unidentified effects on the nervous system.  相似文献   

2.

Background

It has been suggested that cerebrospinal fluid (CSF) CXCL13 is a diagnostic marker of Lyme neuroborreliosis (LNB), as its levels have been shown to be significantly higher in LNB than in several other CNS infections. Levels have also been shown to decline after treatment with intravenous ceftriaxone, but levels after treatment with oral doxycycline have previously not been studied. Like Borrelia burgdorferi, HIV also has neurotropic properties. Elevated serum CXCL13 concentrations have been reported in HIV patients, but data on CSF levels are limited.

Methods

We longitudinally analysed CSF CXCL13 concentrations in 25 LNB patients before and after oral doxycycline treatment. Furthermore, we analysed CSF CXCL13 concentrations in 16 untreated LNB patients, 27 asymptomatic untreated HIV-1 infected patients and 39 controls with no signs of infectious or inflammatory disease.

Results

In the longitudinal LNB study, initially high CSF CXCL13 levels declined significantly after doxycycline treatment, which correlated to a decreased CSF mononuclear cell count. In the cross-sectional study, all the LNB patients had CSF CXCL13 levels elevated above the lowest standard point of the assay (7.8 pg/mL), with a median concentration of 500 pg/mL (range 34–11,678). Of the HIV patients, 52% had elevated CSF CXCL13 levels (median 10 pg/mL, range 0–498). There was a clear overlap in CSF CXCL13 concentrations between LNB patients and asymptomatic HIV patients. All but one of the 39 controls had CSF CXCL13 levels below 7.8 pg/mL.

Conclusions

We confirm previous reports of highly elevated CSF CXCL13 levels in LNB patients and that these levels decline after oral doxycycline treatment. The same pattern is seen for CSF mononuclear cells. CSF CXCL13 levels are elevated in neurologically asymptomatic HIV patients and the levels overlap those of LNB patients. The diagnostic value of CSF CXCL13 in LNB remains to be established.  相似文献   

3.
The α-mannosidase activity in human frontal gyrus, cerebrospinal fluid and plasma has been analyzed by DEAE-cellulose chromatography to investigate the origin of the α-mannosidase activity in cerebrospinal fluid (CSF). The profile of α-mannosidase isoenzymes obtained in CSF was similar to that in the frontal gyrus but different from that in human plasma. In particular the two characteristic peaks of lysosomal α-mannosidase, A and B, which have a pH-optimum of 4.5 and are found in human tissues, were present in both the frontal gyrus and CSF. In contrast the majority of α-mannosidase activity in human plasma was due to the so called intermediate form, which has a pH-optimum of 5.5. The results suggest that the intermediate form of α-mannosidase in plasma does not cross the blood–brain barrier and that the α-mannosidase activity present in the cerebrospinal fluid is of lysosomal type and of brain origin. Thus the α-mannosidase activity in cerebrospinal fluid might mirror the brain pathological changes linked to neurodegenerative disorders such as Parkinson's disease.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease with an average survival of 3 years from symptom onset. Rapid and conclusive early diagnosis is essential if interventions with disease-modifying therapies are to be successful. Cytoskeletal modification and inflammation are known to occur during the pathogenesis of ALS. We measured levels of cytoskeletal proteins and inflammatory markers in the CSF of ALS, disease controls and healthy subjects. We determined threshold values for each protein that provided the optimal sensitivity and specificity for ALS within a training set, as determined by receiver operating characteristic analysis. Interestingly, the optimal assay was a ratio of the levels for phosphorylated neurofilament heavy chain and complement C3 (pNFH/C3). We next applied this assay to a separate test set of CSF samples to verify our results. Overall, the predictive pNFH/C3 ratio identified ALS with 87.3% sensitivity and 94.6% specificity in a total of 71 ALS subjects, 52 disease control subjects and 40 healthy subjects. In addition, the level of CSF pNFH correlated with survival of ALS patients. We also detected increased pNFH in the plasma of ALS patients and observed a correlation between CSF and plasma pNFH levels within the same subjects. These findings support large-scale prospective biomarker studies to determine the clinical utility of diagnostic and prognostic signatures in ALS.  相似文献   

5.
ABSTRACT: BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS). The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. RESULTS: Using LC coupled mass spectrometry; we have established a highly specific and sensitive multiplex selected reaction monitoring (SRM) assay. Our SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 28 proteins present in cerebrospinal fluid (CSF). Protein levels in CSF are generally ~200-fold lower than that in human sera. A limit of detection (LOD) was determined to be as low as one femtomole per uL. We processed and analysed CSF samples from a total of 22 patients with SPMS, 12 patients with non-inflammatory neurological disorders (NIND) and 10 age-matched healthy controls in parallel for the levels of 28 selected potential protein biomarkers, followed by principal component analysis (PCA) for clustering protein biomarkers. Our SRM data suggested different levels of agrin, kallikrein and putative myosin-XVB in SPMS patients as compared to healthy controls. PCA reveals that these proteins are correlated, can be grouped into four principal components. Overall, we established an efficient platform to verify protein biomarkers in CSF, which can be easily adapted to other proteins of interest related to neurodegenerative diseases. CONCLUSIONS: A highly specific and sensitive multiplex SRM-MS assay was established for verifying CSF protein biomarkers in SPMS. Three proteins were found to be expressed significantly differently in SPMS patients as compared to health controls, which will help further our current understanding of SPMS disease pathology and/or therapeutic intervention.  相似文献   

6.
This study demonstrates the power of a novel proteomic approach developed for the detection and identification of biological markers in body fluids. The goal was to observe alterations in the protein patterns of cerebrospinal fluid (CSF) related to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder with unknown etiology. In the experiments, tryptic digests of CSF from patients and healthy controls were analyzed by on-line capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. (FT-ICR MS) Typically, around 4000 peptides were detected in one such experiment, and a pattern recognition program was constructed for the data analysis to distinguish mass chromatograms from patients and controls. This strategy was evaluated comparing the peptide patterns of CSF spiked in vitro with a biomarker, with control CSF. The patterns were clearly separated and the tryptic peptides of the biomarker were successfully selected as characteristic peaks. Hence, the method was applied to compare mass chromatograms of CSF from 12 ALS-patients and 10 matched healthy controls. While no biomarker alone could be identified from the characteristic peaks, we were able to assign 4 out of 5 unknown samples correctly (i.e., 80% correctly diagnosed, 20% false-negative), and it would be 100% if we reject a possible outlier believed to be caused by an occlusion in the spinal CSF compartment. These findings are very promising, although the clinical relevance is not fully established due to the low number of unknown samples analyzed. In addition to the diagnostic potential, these results may be important steps towards understanding the neurodegenerative process.  相似文献   

7.
8.
Demyelination is the main pathological feature of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. Tumor necrosis factor-alpha (TNF-alpha) can cause myelin damage and contribute to MS pathogenesis. We measured plasma and cerebrospinal fluid (CSF) levels of TNF-alpha and its soluble receptors, TNF-sRp55 and TNF-sRp75, in 18 patients with active MS, and in neurological and healthy controls. The same determinations were repeated on plasma and on CSF samples that were collected after the MS patients had ended a six-day treatment with high-dose methylprednisolone (MP). Pre- and post-treatment plasma and CSF TNF-alpha levels, when detectable, and those of TNF-sRp75, did not vary, and were similar to those of controls. CSF TNF-sRp55 levels were higher in acute MS patients than in controls. Post-treatment CSF TNF-sRp55 levels were higher than in the active phase of the disease. The MS patients, who clinically improved, tended to have the highest CSF TNF-sRp55 levels. The increase was due to intrathecal TNF-sRp55 synthesis. Although it is involved in MS pathogenesis, TNF-alpha is not detectable in plasma or in CSF samples from MS patients in various phases of the disease. A better marker of disease activity seems to be CSF TNF-sRp55 levels. The increased CSF levels of TNF-sRp55 in response to MP circumstantially suggest that this receptor could partially account for the beneficial effects of MP in acute MS.  相似文献   

9.
Wang H  Wang K  Xu W  Wang C  Qiu W  Zhong X  Dai Y  Wu A  Hu X 《Journal of neurochemistry》2012,122(1):19-23
The concept that the immune system plays a central role in the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica (NMO) was indisputable. However, neurodegenerative pathological features including loss of axons and neurons were also found in the lesions of these diseases. α-Synuclein is one of the most abundant proteins in pre-synaptic terminals. Recently, many research show α-synuclein level in CSF may reflect the progression of synaptic dysfunction and neuronal apoptosis. Whether the levels of CSF α-synuclein are changed in MS and NMO patients remain unknown. In this study, CSF α-synuclein was measured by an enzyme-linked immunosorbent assay (ELISA) in MS (n = 18) patients, NMO (n = 22) patients, Parkinson's disease patients (n = 9), and the controls (n = 11). We found concentration of α-synuclein in MS and NMO patients were significantly higher than Parkinson's disease subgroup and the controls. Both MS and NMO revealed an increased disease disability with increased CSF α-synuclein. Thus, CSF α-synuclein may be reflect injure axons and neurons in inflammatory demyelinating diseases.  相似文献   

10.
Plasma β-amyloid protein (Aβ) isoforms are considered potential biomarkers for Alzheimer's disease (AD) and dementia. The relation between plasma and cerebrospinal fluid (CSF) levels of Aβ isoforms remains unclear. In order to identify possible correlations between Aβ levels in plasma and CSF we determined Aβ levels in time-linked plasma and CSF samples. Aβ concentrations in plasma (Aβ1–42 and AβN–42) and CSF (Aβ1–42) samples from 49 AD patients, 47 non-Alzheimer's disease dementia (NONAD) patients, 39 MCI patients and 29 controls were determined using a multi-parameter fluorimetric bead-based immunoassay using xMAP® technology (for plasma) and a conventional single-parameter ELISA (for CSF). Plasma Aβ1–42 concentrations did not correlate with CSF Aβ1–42 concentrations in the total study population, or in the different diagnostic groups. No correlations between plasma AβN–42 and CSF Aβ1–42 levels were found either. The CSF/serum albumin index did not show any significant differences between AD, NONAD, MCI and controls.These results suggest that the Aβ levels in plasma are independent of the Aβ levels in CSF both in dementia and controls. The fact that CSF and plasma Aβ do not correlate in patients as well as controls and no significant differences in plasma Aβ1–42 or AβN–42 between patients and controls can be detected hampers the diagnostic utility of the plasma Aβ levels as biomarkers for dementia.  相似文献   

11.
ABSTRACT: BACKGROUND: Alcadeinα (Alcα) is a neuronal membrane protein that colocalizes with the Alzheimer's amyloid-β precursor protein (APP). Successive cleavage of APP by β- and γ-secretases generates the aggregatable amyloid-β peptide (Aβ), while cleavage of APP or Alcα by α- and γ-secretases generates non-aggregatable p3 or p3-Alcα peptides. Aβ and p3-Alcα can be recovered from human cerebrospinal fluid (CSF). We have previously reported alternative processing of APP and Alcα in the CSF of some patients with sporadic mild cognitive impairment (MCI) and AD (SAD). RESULTS: Using the sandwich enzyme-linked immunosorbent assay (ELISA) system that detects total p3-Alcα, we determined levels of total p3-Alcα in CSF from subjects in one of four diagnostic categories (elderly controls, MCI, SAD, or other neurological disease) derived from three independent cohorts. Levels of Aβ40 correlated with levels of total p3-Alcα in all cohorts. CONCLUSIONS: We confirm that Aβ40 is the most abundant Aβ species, and we propose a model in which CSF p3-Alcα can serve as a either (1) a nonaggregatable surrogate marker for γ-secretase activity; (2) as a marker for clearance of transmembrane domain peptides derived from integral protein catabolism; or (3) both. We propose the specification of an MCI/SAD endophenotype characterized by co-elevation of levels of both CSF p3-Alcα and Aβ40, and we propose that subjects in this category might be especially responsive to therapeutics aimed at modulation of γ-secretase function and/or transmembrane domain peptide clearance. These peptides may also be used to monitor the efficacy of therapeutics that target these steps in Aβ metabolism.  相似文献   

12.
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn?????) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn????? and Ac-α-syn?????) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).  相似文献   

13.
1.Sporadic Creutzfeldt-Jakob disease (CJD) is a rapidly progressive and fatal disease. Patients with CJD usually become akinetic mutism within approximately 6 months. In addition, clinical signs and symptoms at early stage of sporadic CJD may not be easy to distinguish from other neurodegenerative diseases by neurological findings. However, diagnostic biochemical parameters including 14-3-3 protein, S100, neuron-specific enorase in cerebrospinal fluid (CSF) have been used as diagnostic markers, elevated titers of these markers can also be observed in CSF in other neurodegenerative diseases. Therefore, we examined other biochemical markers to discriminate CJD from other neurodegenerative diseases in CSF. 2.We analyzed CSF samples derived from 100 patients with various neurodegenerative disorders by Western blot of 14-3-3 protein, quantification of total tau (t-tau) protein, and phosphorylated tau (p-tau) protein. All patients with CJD in this study showed positive 14-3-3 protein and elevated t-tau protein (>1000 pg/mL) in CSF. We also detected positive 14-3-3 protein bands in two patients in non-CJD group (patients with dementia of Alzheimer's type; DAT) and also detected elevated t-tau protein in three patients in non-CJD group. Elevated t-tau protein levels were observed in two patients with DAT and in one patient with cerevrovascular disease in acute phase. 3.To distinguish patients with CJD from non-CJD patients with elevated t-tau protein in CSF, we compared the ratio of p-tau and t-tau proteins. The p-/t-tau ratio was dramatically and significantly higher in DAT patients rather than in CJD patients. 4.Therefore, we concluded that the assay of t-tau protein may be useful as 1st screening and the ratio of p-tau protein/t-tau protein would be useful as 2nd screening to discriminate CJD from other neurodegenerative diseases.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA) to assess initial and longitudinal cerebrospinal fluid (CSF) and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival.  相似文献   

15.
The purpose of the present study was to investigate if cerebrospinal fluid (CSF) biomarkers of neurodegeneration are associated with cognition in bipolar disorder and healthy controls, respectively. CSF concentrations of total and phosphorylated tau, amyloid beta (Aβ)1-42, ratios of Aβ42/40 and Aβ42/38, soluble amyloid precursor protein α and β, and neurofilament light chain protein were analyzed in relation to neuropsychological performance in 82 euthymic bipolar disorder patients and 71 healthy controls. Linear regression models were applied to account for performance in five cognitive domains using the CSF biomarkers. In patients, the CSF biomarkers explained a significant proportion of the variance (15–36%, p=.002 - <.0005) in all cognitive domains independently of age, medication, disease status, and bipolar subtype I or II. However, the CSF biomarkers specifically mirroring Alzheimer-type brain changes, i.e., P-tau and Aβ1-42, did not contribute significantly. In healthy controls, CSF biomarkers did not explain the variance in cognitive performance. Selected CSF biomarkers of neurodegenerative processes accounted for cognitive performance in persons with bipolar disorder, but not for healthy controls. Specifically, the ratios of Aβ42/40 and Aβ42/38 were consistently associated with altered cognitive performance.  相似文献   

16.
Parkinson’s disease (PD) without (non-demented, PDND) and with dementia (PDD), and dementia with Lewy bodies (DLB) are subsumed under the umbrella term Lewy body disorders (LBD). The main component of the underlying pathologic substrate, i.e. Lewy bodies and Lewy neurites, is misfolded alpha-synuclein (Asyn), and - in particular in demented LBD patients - co-occurring misfolded amyloid-beta (Abeta). Lowered blood and cerebrospinal fluid (CSF) levels of transthyretin (TTR) - a clearance protein mainly produced in the liver and, autonomously, in the choroid plexus - are associated with Abeta accumulation in Alzheimer’s disease. In addition, a recent study suggests that TTR is involved in Asyn clearance. We measured TTR protein levels in serum and cerebrospinal fluid of 131 LBD patients (77 PDND, 26 PDD, and 28 DLB) and 72 controls, and compared TTR levels with demographic and clinical data as well as neurodegenerative markers in the CSF. Five single nucleotide polymorphisms of the TTR gene which are considered to influence the ability of the protein to carry its ligands were also analyzed. CSF TTR levels were significantly higher in LBD patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by PDND patients. In addition, CSF TTR levels correlated negatively with CSF Abeta1–42, total tau and phospho-tau levels. Serum TTR levels did not significantly differ among the studied groups. There were no relevant associations between TTR levels and genetic, demographic and clinical data, respectively. These results suggest an involvement of the clearance protein TTR in LBD pathophysiology, and should motivate to elucidate TTR-related mechanisms in LBD in more detail.  相似文献   

17.
Background and ObjectivesAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown aetiology. Metals have been suspected to contribute to ALS pathogenesis since mid-19th century, yet studies on measured metal concentrations in ALS patients have often yielded conflicting results, with large individual variation in measured values. Calculating metal concentration ratios can unveil possible synergistic effects of neurotoxic metals in ALS pathogenesis. The aim of this study was to investigate if ratios of different metal concentrations in cerebrospinal fluid (CSF) and blood plasma, respectively, differ between ALS patients and healthy controls.MethodsCerebrospinal fluid and blood plasma were collected from 17 ALS patients and 10 controls. Samples were analysed for 22 metals by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and all possible 231 metal ratios calculated in each body fluid.ResultsFifty-three metal ratios were significantly elevated in ALS cases as compared to controls (p < 0.05); five in blood plasma, and 48 in CSF. The finding of fewer elevated ratios in blood plasma may indicate specific transport of metals into the central nervous system. The elevated metal ratios in CSF include Cd/Se (p = 0.031), and 16 ratios with magnesium, such as Mn/Mg (p = 0.005) and Al/Mg (p = 0.014).ConclusionMetal ratios may be used as biomarkers in ALS diagnosis and as guidelines for preventive measures.  相似文献   

18.
Abstract: In the present study we describe an ELISA to quantify the light subunit of the neurofilament triplet protein (NFL) in CSF. The method was validated by measuring CSF NFL concentrations in healthy individuals and in two well-characterized groups of patients with amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). The levels were increased in ALS (1,743 ± 1,661 ng/L; mean ± SD) and AD (346 ± 176 ng/L) compared with controls (138 ± 31 ng/L; p < 0.0001 for both). Within the ALS group, patients with lower motor neuron signs only had lower NFL levels (360 ± 237 ng/L) than those with signs of upper motor neuron disease (2,435 ± 1,633 ng/L) ( p < 0.05). In a second study patients with miscellaneous neurodegenerative diseases were investigated (vascular dementia, olivopontocerebellar atrophy, normal pressure hydrocephalus, cerebral infarctions, and multiple sclerosis), and the CSF NFL level was found to be increased (665 ± 385 ng/L; p < 0.0001). NFL is a main structural protein of axons, and we suggest that CSF NFL can be used to monitor neurodegeneration in general, but particularly in ALS with involvement of the pyramidal tract.  相似文献   

19.
Oxidation has been proposed to be an important factor in the pathogenesis of Alzheimer's disease (AD) and amyloid beta is considered to induce oxidation. In biological fluids, including cerebrospinal fluid (CSF), amyloid beta is found complexed to lipoproteins. On the basis of these observations, we investigated the potential role of lipoprotein oxidation in the pathology of AD. Lipoprotein oxidizability was measured in vitro in CSF and plasma from 29 AD patients and found to be significantly increased in comparison to 29 nondemented controls. The levels of the hydrophilic antioxidant ascorbate were significantly lower in CSF and plasma from AD patients. In plasma, alpha-carotene was significantly lower in AD patients compared to controls while alpha-tocopherol levels were indistinguishable between patients and controls. In CSF, a nonsignificant trend to lower alpha-tocopherol levels among AD patients was found. Polyunsaturated fatty acids, the lipid substrate for oxidation, were significantly lower in the CSF of AD patients. Our findings suggest that (i) lipoprotein oxidation may be important in the development of AD and (ii) the in vitro measurement of lipid peroxidation in CSF might become a useful additional marker for diagnosis of AD.  相似文献   

20.
α-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of α-tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the α-tocopherol level and the expression of α-tocopherol transfer protein (α-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte α-tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower α-tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p&lt;0.05), despite the higher plasma α-tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p&lt;0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of α-TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced α-tocopherol level in leukemic leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号