首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Horizontal gene transfer (HGT) is widespread in the world of prokaryotes, but the examples of this phenomenon among multicellular animals, particularly insects, are few. This review examines the transfer of genetic material to the nuclear genomes of insects from the mitochondrial genome (intracellular HGT), as well as from the genomes of viruses, bacteria, fungi, and unrelated insects. In most cases, the mechanisms of this transfer are unknown. Many pro- and eukaryotic genes that moved through the HGT are expressed in the insect genome and in some cases can provide the evolutionary innovations that are considered as aromorphoses.  相似文献   

2.
The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes.  相似文献   

3.
水平基因转移是不通过生殖而进行的遗传物质交流, 在原核生物和单细胞真核生物的进化中起着重要作用。然而, 水平基因转移在多细胞真核生物之间的发生频率以及对多细胞真核生物进化的影响尚不明确。近期的一些研究显示, 水平基因转移在高等植物之间以及高等植物和其它生物之间普遍存在。该文将对高等植物中已发现的一些水平基因转移现象进行综述, 并尝试解析植物之间水平基因转移可能的机制及其重要意义。  相似文献   

4.
In eukaryotic organisms, horizontal gene transfer (HGT) is regarded as an important though infrequent source of reticulate evolution. Many confirmed instances of natural HGT involving multicellular eukaryotes come from flowering plants. This review intends to provide a synthesis of present knowledge regarding HGT in higher plants, with an emphasis on tobacco and other species in the Solanaceae family because there are numerous detailed reports concerning natural HGT events, involving various donors, in this family. Moreover, in-depth experimental studies using transgenic tobacco are of great importance for understanding this process. Valuable insights are offered concerning the mechanisms of HGT, the adaptive role and regulation of natural transgenes, and new routes for gene trafficking. With an increasing amount of data on HGT, a synthetic view is beginning to emerge.  相似文献   

5.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.  相似文献   

6.

Background  

Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants.  相似文献   

7.
Evolution of mitochondrial gene content: gene loss and transfer to the nucleus   总被引:22,自引:0,他引:22  
Mitochondrial gene content is highly variable across extant eukaryotes. The number of mitochondrial protein genes varies from 3 to 67, while tRNA gene content varies from 0 to 27. Moreover, these numbers exclude the many diverse lineages of non-respiring eukaryotes that lack a mitochondrial genome yet still contain a mitochondrion, albeit one often highly derived in ultrastructure and metabolic function, such as the hydrogenosome. Diversity in tRNA gene content primarily reflects differential usage of imported tRNAs of nuclear origin. In the case of protein genes, most of this diversity reflects differential degrees of functional gene transfer to the nucleus, with more minor contributions resulting from gene loss from the cell as a consequence of either substitution via a functional nuclear homolog or the cell's dispensation of the function of the gene product. The tempo and pattern of mitochondrial gene loss is highly episodic, both across the broad sweep of eukaryotes and within such well-studied groups as angiosperms. All animals, some plants, and certain other groups of eukaryotes are mired in profound stases in mitochondrial gene content, whereas other lineages have experienced relatively frequent gene loss. Loss and transfer to the nucleus of ribosomal protein and succinate dehydrogenase genes has been especially frequent, sporadic, and episodic during angiosperm evolution. Potential mechanisms for activation of transferred genes have been inferred, and intermediate stages in the process have been identified by comparative studies. Several hypotheses have been proposed for why mitochondrial genes are transferred to the nucleus, why mitochondria retain genomes, and why functional gene transfer is almost exclusively unidirectional.  相似文献   

8.
Horizontal gene transfer (HGT) has been well documented in prokaryotes and unicellular eukaryotes, but its role in plants and animals remains elusive. In a recent study, we showed that at least 57 families of nuclear genes in the moss Physcomitrella patens were acquired from prokaryotes, fungi or viruses and that HGT played a critical role in plant colonization of land. In this paper, we categorize all acquired genes based on their putative functions and biological processes, and further address the importance of HGT in plant innovation and evolution.  相似文献   

9.
The horizontal gene transfer (HGT) being inferred within prokaryotic genomes appears to be sufficiently massive that many scientists think it may have effectively obscured much of the history of life recorded in DNA. Here, we demonstrate that the tree of life can be reconstructed even in the presence of extensive HGT, provided the processes of genome evolution are properly modeled. We show that the dynamic deletions and insertions of genes that occur during genome evolution, including those introduced by HGT, may be modeled using techniques similar to those used to model nucleotide substitutions that occur during sequence evolution. In particular, we show that appropriately designed general Markov models are reasonable tools for reconstructing genome evolution. These studies indicate that, provided genomes contain sufficiently many genes and that the Markov assumptions are met, it is possible to reconstruct the tree of life. We also consider the fusion of genomes, a process not encountered in gene sequence evolution, and derive a method for the identification and reconstruction of genome fusion events. Genomic reconstructions of a well-defined classical four-genome problem, the root of the multicellular animals, show that the method, when used in conjunction with paralinear/logdet distances, performs remarkably well and is relatively unaffected by the recently discovered big genome artifact.  相似文献   

10.
Key Message

Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve.

Abstract

The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a?>?85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.

  相似文献   

11.
Horizontal gene transfer in eukaryotic evolution   总被引:3,自引:0,他引:3  
Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.  相似文献   

12.
Background and AimsHorizontal gene transfer (HGT) is an important evolutionary mechanism because it transfers genetic material that may code for traits or functions between species or genomes. It is frequent in mitochondrial and nuclear genomes but has not been demonstrated between plastid genomes of different green land plant species.MethodsWe Sanger-sequenced the nuclear internal transcribed spacers (ITS1 and 2) and the plastid rpl16 G2 intron (rpl16). In five individuals with foreign rpl16 we also sequenced atpB-rbcL and trnLUAA-trnFGAA.Key ResultsWe discovered 14 individuals of a moss species with typical nuclear ITSs but foreign plastid rpl16 from a species of a distant lineage. None of the individuals with three plastid markers sequenced contained all foreign markers, demonstrating the transfer of plastid fragments rather than the entire plastid genome, i.e. entire plastids were not transferred. The two lineages diverged 165–185 Myr BP. The extended time interval since lineage divergence suggests that the foreign rpl16 is more likely explained by HGT than by hybridization or incomplete lineage sorting.ConclusionsWe provide the first conclusive evidence of interspecific plastid-to-plastid HGT among land plants. Two aspects are critical: it occurred at several localities during the massive colonization of recently disturbed open habitats that were created by large-scale liming as a freshwater biodiversity conservation measure; and it involved mosses whose unique life cycle includes spores that first develop a filamentous protonema phase. We hypothesize that gene transfer is facilitated when protonema filaments of different species intermix intimately when colonizing disturbed early succession habitats.  相似文献   

13.
ABSTRACT: BACKGROUND: Horizontal gene transfer (HGT) is traditionally considered to be rare in multicellular eukaryotes such as animals. Recently, many genes of miscellaneous algal origins were discovered in choanoflagellates. Considering that choanoflagellates are the existing closest relatives of animals, we speculated that ancient HGT might have occurred in the unicellular ancestor of animals and affected the long-term evolution of animals. RESULTS: Through genome screening, phylogenetic and domain analyses, we identified 14 gene families, including 92 genes, in the tunicate Ciona intestinalis that are likely derived from miscellaneous photosynthetic eukaryotes. Almost all of these gene families are distributed in diverse animals, suggesting that they were mostly acquired by the common ancestor of animals. Their miscellaneous origins also suggest that these genes are not derived from a particular algal endosymbiont. In addition, most genes identified in our analyses are functionally related to molecule transport, cellular regulation and methylation signaling, suggesting that the acquisition of these genes might have facilitated the intercellular communication in the ancestral animal. CONCLUSIONS: Our findings provide additional evidence that algal genes in aplastidic eukaryotes are not exclusively derived from historical plastids and thus important for interpreting the evolution of eukaryotic photosynthesis. Most importantly, our data represent the first evidence that more anciently acquired genes might exist in animals and that ancient HGT events have played an important role in animal evolution.  相似文献   

14.

Background  

Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid.  相似文献   

15.
Horizontal gene transfer (HGT), a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of HGT on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. This issue, however, remains unresolved because the various methods developed to detect potential HGT events identify different sets of genes. The present-day consensus is that phylogenetic analysis of individual genes is still the most objective and accurate approach for determining the occurrence and directionality of HGT. Here we present a genome-scale phylogenetic analysis of protein-encoding genes from five closely related Chlamydia, identifying a reliable set of sequences that have arisen via HGT since the divergence of the Chlamydia lineage. According to our knowledge, this is the first systematic phylogenetic inference-based attempt to establish a reliable set of acquired genes in a bacterial genome. Although Chlamydia are obligate intracellular parasites of higher eukaryotes, and thus suspected to be isolated from HGT more than the free-living species, our results show that their diversification has involved the introduction of foreign sequences into their genome. Furthermore, we also identified a complete set of genes that have undergone deletion, duplication, or rearrangement during this evolutionary period leading to the radiation of Chlamydia species. Our analysis may provide a deeper insight into how these medically important pathogens emerged and evolved from a common ancestor.  相似文献   

16.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

17.
Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.  相似文献   

18.
Horizontal gene transfer and the origin of species: lessons from bacteria   总被引:31,自引:0,他引:31  
In bacteria, horizontal gene transfer (HGT) is widely recognized as the mechanism responsible for the widespread distribution of antibiotic resistance genes, gene clusters encoding biodegradative pathways and pathogenicity determinants. We propose that HGT is also responsible for speciation and sub-speciation in bacteria, and that HGT mechanisms exist in eukaryotes.  相似文献   

19.
Jianping Xu 《Génome》2005,48(6):951-958
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.  相似文献   

20.
Horizontal gene transfer (HGT) is a fundamental process in prokaryotic evolution, contributing significantly to diversification and adaptation. HGT is typically facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages, which often impose fitness costs on their hosts. However, a considerable number of bacterial genes are involved in defence mechanisms that limit the propagation of MGEs, suggesting they may actively restrict HGT. In our study, we investigated whether defence systems limit HGT by examining the relationship between the HGT rate and the presence of 73 defence systems across 12 bacterial species. We discovered that only six defence systems, three of which were different CRISPR-Cas subtypes, were associated with a reduced gene gain rate at the species evolution scale. Hosts of these defence systems tend to have a smaller pangenome size and fewer phage-related genes compared to genomes without these systems. This suggests that these defence mechanisms inhibit HGT by limiting prophage integration. We hypothesize that the restriction of HGT by defence systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and the fitness effect of HGT in bacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号