首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood vessels and neurons share several types of guidance cues and cell surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 is present on blood vessels and nerves. NRP1 binds two structurally diverse ligands, the semaphorin SEMA3A and the VEGF164 isoform of vascular endothelial growth factor. SEMA3A was originally identified as a repulsive cue for developing axons that acts by signalling through receptor complexes containing NRP1 and plexins. In vitro, SEMA3A also inhibits integrin function and competes with VEGF164 for binding to NRP1 to modulate the migration of endothelial cells. These observations resulted in a widely accepted model of vascular patterning in which the balance of VEGF164 and SEMA3A determines endothelial cell behaviour. However, we now demonstrate that SEMA3A is not required for angiogenesis in the mouse, which instead is controlled by VEGF164. We find that SEMA3A, but not VEGF164, is required for axon patterning of limb nerves, even though the competition between VEGF164 and SEMA3A for NRP1 affects the migration of neuronal progenitor cells in vitro and has been hypothesised to control axon guidance. Moreover, we show that there is no genetic interaction between SEMA3A and VEGF164 during vasculogenesis, angiogenesis or limb axon patterning, suggesting that ligand competition for NRP1 binding cannot explain neurovascular congruence, as previously suggested. We conclude that NRP1 contributes to both neuronal and vascular patterning by preferentially relaying SEMA3A signals in peripheral axons and VEGF164 signals in blood vessels.  相似文献   

2.
The vasculature is a highly specialized organ that functions in a number of key physiological tasks including the transport of oxygen and nutrients to tissues. Formation of the vascular system is an essential and rate-limiting step in development and occurs primarily through two main mechanisms, vasculogenesis and angiogenesis. Both vasculogenesis, the de novo formation of vessels, and angiogenesis, the growth of new vessels from pre-existing vessels by sprouting, are complex processes that are mediated by the precise coordination of multiple cell types to form and remodel the vascular system. A host of signaling molecules and their interaction with specific receptors are central to activating and modulating vessel formation. This review article summarizes the current state of research involving signaling molecules that have been demonstrated to function in the regulation of vasculogenesis and angiogenesis, as well as molecules known to play a role in vessel maturation, hypoxia-driven angiogenesis and arterial-venous specification.  相似文献   

3.
Blood vessels are crucial for normal development and growth by providing oxygen and nutrients. As shown by genetic targeting studies in mice, zebrafish and Xenopus blood vessel formation (or angiogenesis) is a multistep process, which is highly dependent on angiogenic growth factors such as VEGF, the founding member of the VEGF family. VEGF binds to the tyrosine kinase receptors VEGFR-1 and VEGFR-2, and loss of VEGF or its receptors results in abnormal angiogenesis and lethality during development. In contrast, PlGF, another member of this family, binds only to VEGFR-1, and appears to be crucial exclusively for pathological angiogenesis in the adult. However, the expression of VEGFR-1 and VEGFR-2 on non-vascular cells suggests additional biological properties for these growth factors. Indeed, the VEGF family and its receptors determine development and homeostasis of many organs, including the respiratory, skeletal, hematopoietic, nervous, renal and reproductive system, independent of their vascular role. These new insights broaden the activity spectrum of these "angiogenic" growth factors, and may have therapeutic implications when using these growth factors for vascular and/or non-vascular purposes.  相似文献   

4.
Netrin-1 is a bifunctional axonal guidance cue, capable of attracting or repelling developing axons via activation of receptors of the deleted in colorectal cancer (DCC) and uncoordinated 5 (UNC5) families, respectively. In addition to its role in axon guidance, Netrin-1 has been implicated in angiogenesis, where it may also act as a bifunctional cue. Attractive effects of Netrin-1 on endothelial cells appear to be mediated by an as yet unknown receptor, while repulsion of developing blood vessels in mouse embryos is mediated by the UNC5B receptor. To explore evolutionary conservation of vascular UNC5B expression and function, we have cloned the chick unc5b homologue. Chick and quail embryos showed unc5b expression in arterial EC and sprouting angiogenic capillaries. To test if Netrin-1 displayed pro- or anti-angiogenic activities in the avian embryo, we grafted cell lines expressing recombinant chick or human Netrin-1 at different stages of development. Netrin-1 expressing cells inhibited angiogenic sprouting of unc5b expressing blood vessels, but had no pro-angiogenic activity at any stage of development examined. Netrin-1 also had no effect on the recruitment of circulating endothelial precursor cells. Taken together, these data indicate that vascular unc5b expression and function is conserved between chick and mice.  相似文献   

5.
Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension.  相似文献   

6.
Key vasculogenic (de-novo vessel forming) and angiogenic (vessel remodelling) events occur in the mouse embryo between embryonic days (E) 8.0 and 10.0 of gestation, during which time the vasculature develops from a simple circulatory loop into a complex, fine structured, three-dimensional organ. Interpretation of vascular phenotypes exhibited by signalling pathway mutants has historically been hindered by an inability to comprehensively image the normal sequence of events that shape the basic architecture of the early mouse vascular system. We have employed Optical Projection Tomography (OPT) using frequency distance relationship (FDR)-based deconvolution to image embryos immunostained with the endothelial specific marker PECAM-1 to create a high resolution, three-dimensional atlas of mouse vascular development between E8.0 and E10.0 (5 to 30 somites). Analysis of the atlas has provided significant new information regarding normal development of intersomitic vessels, the perineural vascular plexus, the cephalic plexus and vessels connecting the embryonic and extraembryonic circulation. We describe examples of vascular remodelling that provide new insight into the mechanisms of sprouting angiogenesis, vascular guidance cues and artery/vein identity that directly relate to phenotypes observed in mouse mutants affecting vascular development between E8.0 and E10.0. This atlas is freely available at http://www.mouseimaging.ca/research/mouse_atlas.html and will serve as a platform to provide insight into normal and abnormal vascular development.  相似文献   

7.
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules.  相似文献   

8.
Angiogenesis is the complex process of new blood vessel formation defined by the sprouting of new blood vessels from a pre-existing vessel network. Angiogenesis plays a key role not only in normal development of organs and tissues, but also in many diseases in which blood vessel formation is dysregulated, such as cancer, blindness and ischemic diseases. In adult life, blood vessels are generally quiescent so angiogenesis is an important target for novel drug development to try and regulate new vessel formation specifically in disease. In order to better understand angiogenesis and to develop appropriate strategies to regulate it, models are required that accurately reflect the different biological steps that are involved. The mouse neonatal retina provides an excellent model of angiogenesis because arteries, veins and capillaries develop to form a vascular plexus during the first week after birth. This model also has the advantage of having a two-dimensional (2D) structure making analysis straightforward compared with the complex 3D anatomy of other vascular networks. By analyzing the retinal vascular plexus at different times after birth, it is possible to observe the various stages of angiogenesis under the microscope. This article demonstrates a straightforward procedure for analyzing the vasculature of a mouse retina using fluorescent staining with isolectin and vascular specific antibodies.  相似文献   

9.
Semaphorin-plexin signaling guides patterning of the developing vasculature   总被引:4,自引:0,他引:4  
Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis.  相似文献   

10.
Relatively limited information is available regarding the mechanisms controlling vasomotricity in human vessels. Isolated vessels obtained from patients undergoing surgery were used to characterize the role of endothelial factors and to study coupling mechanisms between receptors, intracellular calcium, and contraction. However, these investigations are limited by the availability of tissues and many uncontrolled factors. Cultured human vascular cells were also used, were these cells rapidly lose at least some of their differentiated characters. Recently, a human blood vessel equivalent was constructed in vitro from cultured cells, using tissue engineering. This technique allowed us to obtain vessel equivalents containing intima, media, and adventitia layers or tubular media layer only. Contraction and rises in intracellular calcium produced by agonists were studied, indicating that such human vessel equivalents may provide valuable models for pharmacological studies.  相似文献   

11.
Nerves and blood vessels resemble each other in their ability to form branching networks. They are in close proximity suggesting possible molecular interactions. The patterning of nerves and blood vessels are not random but are regulated by attractive and repulsive cues. Four major neuronal guidance factors that are sensed by growth cones have been identified, Semaphorin, Ephrin, Slit and Netrin, and their cognate receptors, neuropilin, Eph, roundabouts (Robo) and uncoordinated-5 (UNC5). Unexpectedly, these ligand/receptor pairs also regulate developmental and tumor angiogenesis. Together, there is strong evidence that development of the nervous and vascular systems are regulated by common cues.  相似文献   

12.
Leaves on tomato plants infected with Fusarium oxysporum f. lycopersici frequently wilt unilaterally when the vascular bundles supplying the affected leaflets are diseased. However, when the vascular bundles on one side of healthy petioles are severed by notching the petiole base, the entire leaf remains turgid. Leaflets on the notched side receive water by diffusion between bundles at the petiole tip. Lateral translocation of water out of individual vessels and between bundles in diseased xylem is impaired by the impregnation of vessel walls, intercellular spaces, and cells adjacent to vessels with the products of vascular discoloration. Waterproofing of vascular bundles can be induced in excised healthy leaves by culture filtrates of the pathogen and catechol. Waterproofing of vessels may play an important role in vascular dysfunction by confining water to individual vessels and thereby increasing the importance of vessel occlusions.  相似文献   

13.
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.  相似文献   

14.
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth.  相似文献   

15.
Formation of a functional vasculature during mammalian development is essential for embryonic survival. In addition, imbalance in blood vessel growth contributes to the pathogenesis of numerous disorders. Most of our understanding of vascular development and blood vessel growth comes from investigating the Vegf signaling pathway as well as the recent observation that molecules involved in axon guidance also regulate vascular patterning. In order to take an unbiased, yet focused, approach to identify novel genes regulating vascular development, we performed a three-step ENU mutagenesis screen in zebrafish. We first screened live embryos visually, evaluating blood flow in the main trunk vessels, which form by vasculogenesis, and the intersomitic vessels, which form by angiogenesis. Embryos that displayed reduced or absent circulation were fixed and stained for endogenous alkaline phosphatase activity to reveal blood vessel morphology. All putative mutants were then crossed into the Tg(flk1:EGFP)(s843) transgenic background to facilitate detailed examination of endothelial cells in live and fixed embryos. We screened 4015 genomes and identified 30 mutations affecting various aspects of vascular development. Specifically, we identified 3 genes (or loci) that regulate the specification and/or differentiation of endothelial cells, 8 genes that regulate vascular tube and lumen formation, 8 genes that regulate vascular patterning, and 11 genes that regulate vascular remodeling, integrity and maintenance. Only 4 of these genes had previously been associated with vascular development in zebrafish illustrating the value of this focused screen. The analysis of the newly defined loci should lead to a greater understanding of vascular development and possibly provide new drug targets to treat the numerous pathologies associated with dysregulated blood vessel growth.  相似文献   

16.
Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.  相似文献   

17.
Common cues regulate neural and vascular patterning   总被引:1,自引:0,他引:1  
  相似文献   

18.
Apart from major molecules involved in angiogenesis, such as growth factors, cytokines and chemokines, much attention is now being paid to guidance molecules that determine growth trajectories of the de novo formation of blood vessels (ephrins and their receptors, semaphorin receptors neuropilins and plexins, Slit receptor Robo, netrin receptor UNC5B, urokinase and its receptor uPAR, T-cadherin). Guidance receptors play an important role in the regulation of vascular growth trajectory during embryogenesis and vascular regeneration in adults. Besides, matrix metalloproteinases (MMPs) and serine proteases (plasmin and urokinase) are also essential for angiogenesis and vascular wall remodeling. Aberrant gene expression profiles or signaling pathways related to the above proteins can lead to various pathologies.  相似文献   

19.
Postnatal neovascularization is essential for wound healing, cancer progression, and many other physiological functions. However, its genetic mechanism is largely unknown. In this report, we study neovascularization in regenerating adult zebrafish fins using transgenic fish that express EGFP in blood vessel endothelial cells. We first describe the morphogenesis of regenerating vessels in wild-type animals and then the phenotypic analysis of a genetic mutation that disrupts blood vessel regeneration. In wild-type zebrafish caudal fins, amputated blood vessels heal their ends by 24 h postamputation (hpa) and then reconnect arteries and veins via anastomosis, to resume blood flow at wound sites by 48 hpa. The truncated vessels regenerate by first growing excess vessels to form unstructured plexuses, resembling the primary capillary plexuses formed during embryonic vasculogenesis. Interestingly, this mode of vessel growth switches by 8 days postamputation (dpa) to growth without a plexus intermediate. During blood vessel regeneration, vessel remodeling begins during early plexus formation and continues until the original vasculature pattern is reestablished at approximately 35 dpa. Temperature-sensitive mutants for reg6 have profound defects in blood vessel regeneration. At the restrictive temperature, reg6 regenerating blood vessels first fail to make reconnections between severed arteries and veins, and then form enlarged vascular sinuses rather than branched vascular plexuses. Reciprocal temperature-shift experiments show that reg6 function is required throughout plexus formation, but not during later growth. Our results suggest that the reg6 mutation causes defects in branch formation and/or angiogenic sprouting.  相似文献   

20.
Angiogenesis designates the formation of new vessels from preexisting ones, and occurs mainly during development. Tight control of this process is a prerequisite to avoid excess/defect in angiogenesis that are the underlying causes of several diseases conditions. Growing lines of evidences have indicated that some guidance cues are involved in regulation of vascular system elaboration, in addition to their role during nervous system development. In this way, netrin-1 has been involved in control of angiogenesis. However, a controversy has emerged regarding its action, since it was concluded from different studies that this protein was either a pro or an anti-angiogenic factor. Thus, netrin-1 role is still unclear. The aim of this review is to propose clues to explain previously reported discrepancies, in light of the dependence receptors model. Indeed, netrin-1 could likely favor angiogenesis, notably by blocking apoptosis induced by its unbound UNC5B receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号