首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.  相似文献   

4.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

5.
6.
7.
8.
9.
Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.  相似文献   

10.
11.
12.
Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.  相似文献   

13.
Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.  相似文献   

14.
Debanu Das  Robert D. Finn  Polat Abdubek  Tamara Astakhova  Herbert L. Axelrod  Constantina Bakolitsa  Xiaohui Cai  Dennis Carlton  Connie Chen  Hsiu‐Ju Chiu  Michelle Chiu  Thomas Clayton  Marc C. Deller  Lian Duan  Kyle Ellrott  Carol L. Farr  Julie Feuerhelm  Joanna C. Grant  Anna Grzechnik  Gye Won Han  Lukasz Jaroszewski  Kevin K. Jin  Heath E. Klock  Mark W. Knuth  Piotr Kozbial  S. Sri Krishna  Abhinav Kumar  Winnie W. Lam  David Marciano  Mitchell D. Miller  Andrew T. Morse  Edward Nigoghossian  Amanda Nopakun  Linda Okach  Christina Puckett  Ron Reyes  Henry J. Tien  Christine B. Trame  Henry van den Bedem  Dana Weekes  Tiffany Wooten  Qingping Xu  Andrew Yeh  Jiadong Zhou  Keith O. Hodgson  John Wooley  Marc‐André Elsliger  Ashley M. Deacon  Adam Godzik  Scott A. Lesley  Ian A. Wilson 《Protein science : a publication of the Protein Society》2010,19(11):2131-2140
Sufu (Suppressor of Fused), a two‐domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu‐like proteins have previously been identified based on sequence similarity to the N‐terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu‐like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu‐like protein. The structure revealed a striking similarity to the N‐terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ~15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu‐like proteins that are present in ~200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam.  相似文献   

15.
Li W  Wang Z  Li J  Yang H  Cui S  Wang X  Ma L 《PloS one》2011,6(6):e21364
Polycomb group protein (PcG)-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT) and FLOWER LOCUS C (FLC). However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.  相似文献   

16.
Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.  相似文献   

17.
Polycomb response elements (PREs) are regulatory sites that mediate the silencing of homeotic and other genes. The bxd PRE region from the Drosophila Ultrabithorax gene can be subdivided into subfragments of 100 to 200 bp that retain different degrees of PRE activity in vivo. In vitro, embryonic nuclear extracts form complexes containing Polycomb group (PcG) proteins with these fragments. PcG binding to some fragments is dependent on consensus sequences for the GAGA factor. Other fragments lack GAGA binding sites but can still bind PcG complexes in vitro. We show that the GAGA factor is a component of at least some types of PcG complexes and may participate in the assembly of PcG complexes at PREs.  相似文献   

18.
19.
In competitive in vitro reconstitution experiments synthetic DNA composed of tandem repeats of the repetitive sequence (A/T)3NN(G/C)3NN, specifically the 20 bp 'TG sequence' (5'-TCGGTGTTAGAGCCTGTAAC-3'), was reported to associate with the histone octamer with an affinity higher than that of nucleosomally derived DNA. However, at least two groups have independently shown that tandem repeats of the TG sequence do not accommodate a stably positioned nucleosome in vivo. It was suggested that the anisotropic flexibility of the TG sequence, governed by a 10 bp sequence periodicity, is incompatible with the required underwinding of the DNA helix at the nucleosome pseudodyad while maintaining a bending preference that can be accommodated in the remainder of the nucleosome. Here we test this hypothesis directly by studying the in vivo nucleosomal structure of modified TG sequences designed to accommodate underwinding at the pseudodyad. We show that these modifications are not sufficient to allow stable incorporation of the TG sequence repeat into a nucleosome in vivo, but do note invasion from one end of the TG heptamer of a translationally random but rotationally constrained nucleosome. We discuss possible reasons for the absence of nucleosomes from the TG sequence in vivo.  相似文献   

20.
Human CCAAT/enhancer-binding protein delta (CEBPD) has been reported as a tumor suppressor because it both induces growth arrest involved in differentiation and plays a crucial role as a regulator of pro-apoptotic gene expression. In this study, CEBPD gene expression is down-regulated, and "loss of function" alterations in CEBPD gene expression are observed in cervical cancer and hepatocellular carcinoma. Suppressor of zeste 12 (SUZ12), a component of the polycomb repressive complex 2 (PRC2), silences CEBPD promoter activity, enhancing the methylation of exogenous CEBPD promoter through the proximal CpG islands. Moreover, this molecular approach is consistent with the opposite mRNA expression pattern between SUZ12 and CEBPD in cervical cancer and hepatocellular carcinoma patients. We further demonstrated that Yin-Yang-1 (YY1) physically interacts with SUZ12 and can act as a mediator to recruit the polycomb group proteins and DNA methyltransferases to participate in the CEBPD gene silencing process. Taking these results into consideration, we not only demonstrate the advantage of SUZ12-silenced CEBPD expression in tumor formation but also clarify an in vivo evidence for YY1-mediated silencing paths of SUZ12 and DNA methyltransferases on the CEBPD promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号