首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular-superoxide dismutase (EC-SOD) is a secretory glycoprotein that is major SOD isozyme in extracellular fluids. We revealed the possible structure of the carbohydrate chain of serum EC-SOD with the serial lectin affinity technique. The structure is a biantennary complex type with an internal fucose residue attached to asparagine-linked N-acetyl-D-glucosamine and with terminal sialic acid linked to N-acetyllactosamine. EC-SOD in plasma is heterogeneous with regard to heparin affinity and can be divided into three fractions: A, without affinity; B, with intermediate affinity; and C, with high affinity. It appeared that this heterogeneity is not dependent on the carbohydrate structure upon comparison of EC-SOD A, B, and C. No effect of the glycopeptidase F treatment of EC-SOD C on its heparin affinity supported the results. A previous report showed that both lysine and arginine residues probably at the C-terminal end, contribute to heparin binding. Recombinant EC-SOD C treated with trypsin or endoproteinase Lys C, which lost three lysine residues (Lys-211, Lys-212, and Lys-220) or one lysine residue (Lys-220) at the C-terminal end, had no or weak affinity for the heparin HPLC column, respectively. The proteinase-treated r-EC-SOD C also lost triple arginine residues which are adjacent to double lysine residues. These results suggest that the heparin-binding site may occur on a "cluster" of basic amino acids at the C-terminal end of EC-SOD C. EC-SOD is speculated to be primarily synthesized as type C, and types A and B are probably the result of secondary modifications. It appeared that the proteolytic cleavage of the exteriorized lysine- and arginine-rich C-terminal end in vivo is a more important contributory factor to the formation of EC-SOD B and/or EC-SOD A.  相似文献   

2.
A fundamental property of the secretory tetrameric extracellular superoxide dismutase (EC-SOD) is its affinity for heparin and analogues, in vivo, mediating attachment to heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. EC-SOD is in vivo heterogeneous with regard to heparin affinity and can be divided into subclasses; A which lacks heparin affinity, B with intermediate affinity, and C with strong heparin affinity. The EC-SOD C subunits contain 222 amino acids and among the last 20 carboxyl-terminal amino acids, 10 are positively charged and six of these are located in a cluster in positions 210-215. To analyze if this local accumulation of basic amino acids is responsible for heparin binding we produced three series of recombinant EC-SOD (rEC-SOD) variants, six containing amino acid exchanges in the carboxyl-terminal end, four with truncations, and two with both truncations and substitutions. Exchange of positively or negatively charged amino acids on the carboxyl-terminal side of the cluster results in only minor modifications in heparin affinity, whereas substitution of three of the amino acids in the cluster abrogates the heparin binding. Insertions of stop codons at different positions resulted in either C or A but not B class EC-SOD. In an attempt to produce EC-SODs with intermediate heparin affinities, plasmids defining C and A class EC-SOD were cotransfected into Chinese hamster ovary cells. In addition to the parental A and C class EC-SOD forms, two variants with intermediate heparin affinities were formed. Coincubation of EC-SOD C and A resulted in the appearance of one heterotetramer with intermediate affinity for heparin. We conclude that the cluster of six basic amino acids forms the essential part of the heparin-binding domain and that the composition of the four subunits in the EC-SOD tetramer determines the affinity for heparin. This domain is different from heparin-binding domains of other proteins, and its localization allows the distribution of EC-SOD in vivo to be regulated by proteolytic processing.  相似文献   

3.
The high heparin affinity subtype C of the secretory enzyme extracellular superoxide dismutase (EC-SOD) exists in the body mainly complexed with extracellular sulfated glycosaminoglycans (SGAGs). Addition of sulfated polysaccharides to EC-SOD C resulted in a prompt partial inhibition of the enzymic activity, in most cases amounting to 10-17%, but with the large dextran sulfate 500,000 amounting to 35%. Complex formation between heparin and EC-SOD C could also be observed as increases in apparent molecular weight of the enzyme. The findings suggest that the binding sites for SGAGs on EC-SOD C are localized far from the active site and that EC-SOD in vivo associated with SGAGs should retain the major part of its enzymic activity. Studies with amino acid-specific reagents suggested that both lysine and arginine residues are involved in the binding of SGAGs. In particular, modification of only a few lysine residues/subunit resulted in loss of high SGAG affinity, whereas arginine modification resulted in loss of not only SGAG affinity but also enzymic activity. We propose that this is due to modification of Arg-186, which is homologous to the highly conserved arginine in the entrance to the active site of the copperzinc-SODs.  相似文献   

4.
Human extracellular superoxide dismutase (EC-SOD) was purified to homogeneity from lung tissue and the nature of the binding of heparin to EC-SOD was investigated. The enzyme was purified using three column chromatographic steps, and 127 μg of purified EC-SOD was obtained. A specific anti-human EC-SOD antibody was obtained by immunization with the purified enzyme. Western blot analysis of the heparin affinity chromatography product indicated that the presence of the inter-subunit disulfide bond affects the affinity of EC-SOD for heparin. The affinity of EC-SOD for heparin is a very important feature of the enzyme because it controls the distribution of the enzyme in tissues. The present study suggests that, not only the processing of the C-terminal region but inter-subunit disulfide bonds also play a role in determining the tissue distribution of EC-SOD. Moreover, the results obtained here also suggest that the redox state of the tissues might regulate the function of the EC-SOD.  相似文献   

5.
Human extracellular superoxide dismutase (EC-SOD) was purified to homogeneity from lung tissue and the nature of the binding of heparin to EC-SOD was investigated. The enzyme was purified using three column chromatographic steps, and 127 μg of purified EC-SOD was obtained. A specific anti-human EC-SOD antibody was obtained by immunization with the purified enzyme. Western blot analysis of the heparin affinity chromatography product indicated that the presence of the inter-subunit disulfide bond affects the affinity of EC-SOD for heparin. The affinity of EC-SOD for heparin is a very important feature of the enzyme because it controls the distribution of the enzyme in tissues. The present study suggests that, not only the processing of the C-terminal region but inter-subunit disulfide bonds also play a role in determining the tissue distribution of EC-SOD. Moreover, the results obtained here also suggest that the redox state of the tissues might regulate the function of the EC-SOD.  相似文献   

6.
Previous studies from our laboratory demonstrated that PVC-211 murine leukemia virus (MuLV), a neuropathogenic variant of Friend MuLV (F-MuLV), had undergone genetic changes which allowed it to efficiently infect rat brain capillary endothelial cells (BCEC) in vivo and in vitro. Two amino acid changes from F-MuLV in the putative receptor binding domain (RBD) of the envelope surface protein of PVC-211 MuLV (Glu-116 to Gly and Glu-129 to Lys) were shown to be sufficient for conferring BCEC tropism on PVC-211 MuLV. Recent examination of the unique RBD of PVC-211 MuLV revealed that the substitution of Lys for Glu at position 129 created a new heparin-binding domain that overlapped a heparin-binding domain common to ecotropic MuLVs. In this study we used heparin-Sepharose columns to demonstrate that PVC-211 MuLV, but not F-MuLV, can bind efficiently to heparin and that one or both of the amino acids in the RBD of PVC-211 MuLV that are associated with BCEC tropism are responsible. We further showed that heparin can enhance or inhibit MuLV infection and that the mode of action is dependent on heparin concentration, sulfation of heparin, and the affinity of the virus for heparin. Our results suggest that the amino acid changes that occurred in the envelope surface protein of PVC-211 MuLV may allow the virus to bind strongly to the surface of BCEC via heparin-like molecules, increasing the probability that the virus will bind to its cell surface receptor and efficiently infect these cells.  相似文献   

7.
Intravenous heparin has previously been shown to release the high-heparin-affinity fraction C of extracellular-superoxide dismutase (EC-SOD, EC 1.15.1.1) to plasma in man and other mammals. This paper reports on further studies of the phenomena in the pig. A dose-response curve of the effect of heparin revealed that 1000 IU/kg body weight is needed for maximal release of EC-SOD C. This dose is an order of magnitude larger than that needed for the maximal release to plasma of factors such as lipoprotein lipase, hepatic lipase, and diamine oxidase, which are distributed between plasma and endothelium similarly to EC-SOD C. Thus EC-SOD C appears to have an unusually high affinity for endothelial cell-surface sulfated glycosaminoglycans relative to the affinity for heparin. There was no significant difference in releasing potency between unfractionated heparin and heparin subfractions with high or low affinity for antithrombin III. The heparin structure conferring high-affinity binding to antithrombin III is thus not specifically involved in binding to EC-SOD C. The non-biosynthetic compound dextran sulfate 5000 was an order of magnitude more efficient than heparin. Protamine displayed dual effects. Given alone in high dose it released EC-SOD to plasma, probably due to binding to endothelial cell-surface sulfated glycosaminoglycans displacing fraction C of the enzyme. When given after heparin, in a dose just below that expected to neutralize the heparin, protamine reversed the heparin-induced EC-SOD release.  相似文献   

8.
The secretory enzyme extracellular superoxide dismutase (EC-SOD) occurs in at least three forms, which differ with regard to heparin affinity: A lacks affinity, B has intermediate affinity, and C has relatively strong affinity. The affinity of EC-SOD C for various sulphated glycosaminoglycans (GAGs) was assessed (a) by determining the concentration of NaCl required to release the enzyme from GAG-substituted Sepharose 4B and (b) by determining the relative potencies of the GAGs to release EC-SOD C from heparan sulphate-Sepharose 4B. Both methods indicated the same order of affinity. Heparin bound EC-SOD C about 10 times as avidly as the studied heparan sulphate preparation, which in turn was 10 and 150 times as efficient as dermatan sulphate and chondroitin sulphate respectively. Chondroitin sulphate showed weak interaction with EC-SOD C at physiological ionic strength. Heparin subfractions with high or low affinity for antithrombin III were equally efficient. The binding of EC-SOD C to heparin-Sepharose was essentially independent of pH in the range 6.5-9; below pH 6.5 the affinity increased, and beyond pH 9.5 there was a precipitous fall in affinity. The inhibitory effect of NaCl on the binding of EC-SOD C to GAGs indicates that the interaction is of electrostatic nature. EC-SOD C carries a negative net charge at neutral pH, and it is suggested that the binding occurs between the negative charges of the GAG sulphate groups and a structure in the C-terminal end of the enzyme that has a cluster of positive charges. These results are compatible with the notion that heparan sulphate proteoglycans on cell surfaces or in the intercellular matrix may serve to bind EC-SOD C in tissues.  相似文献   

9.
Non-enzymatic glycation of antithrombin III (AT-III) has been proposed as a significant contributor to the increased incidence of thrombo-occlusive events in diabetics. AT-III, isolated from normal human plasma by means of heparin affinity and ion-exchange chromatography, was incubated with 0-0.5 M glucose in neutral phosphate buffer at 37 degrees C. The extent of non-enzymatic glycation could be monitored by uptake of radioactivity as well as by binding to a phenylboronate affinity resin, which effectively retards AT-III containing ketoamine-linked glucose. Non-enzymatically glycated AT-III (approx. 1 mol glucose/mol protein) bound heparin nearly as efficiently as non-glycated AT-III. The two AT-III preparations were equally active in inhibiting thrombin cleavage of chromogenic substrate. Following incubation with [14C]glucose, structural analyses of cyanogen-bromide-cleaved peptides of enzymatically glycated AT-III showed that the [14C]glucose adducts were distributed over many sites on the molecule. This lack of specificity contrasts with the restricted sites of modification on hemoglobin, albumin and ribonuclease A, and explains why non-enzymatic glycation of AT-III has little if any effect on its function.  相似文献   

10.
The increased glycation of plasma apolipoproteins represents a possible major factor for lipid disturbances and accelerated atherogenesis in diabetic patients. The glycation of apolipoprotein E (apoE), a key lipid-transport protein in plasma, was studied both in vivo and in vitro. ApoE was shown to be glycated in plasma very low density lipoproteins of both normal subjects and hyperglycemic, diabetic patients. However, diabetic patients with hyperglycemia showed a 2-3-fold increased level of apoE glycation. ApoE from diabetic plasma showed decreased binding to heparin compared to normal plasma apoE. The rate of Amadori product formation in apoE in vitro was similar to that for albumin and apolipoproteins A-I and A-II. The glycation of apoE in vitro significantly decreased its ability to bind to heparin, a critical process in the sequestration and uptake of apoE-containing lipoproteins by cells. Diethylenetriaminepentaacetic acid, a transition metal chelator, had no effect on the loss of apoE heparin-binding activity, suggesting that glycation rather than glycoxidation is responsible for this effect. In contrast, glycation had no effect on the interaction of apoE with amyloid beta-peptide. ApoE glycation was demonstrated to be isoform-specific. ApoE(2) showed a higher glycation rate and the following order was observed: apoE(2)>apoE(4)>apoE(3). The major glycated site of apoE was found to be Lys-75. These findings suggest that apoE is glycated in an isoform-specific manner and that the glycation, in turn, significantly decreases apoE heparin-binding activity. We propose that apoE glycation impairs lipoprotein-cell interactions, which are mediated via heparan sulfate proteoglycans and may result in the enhancement of lipid abnormalities in hyperglycemic, diabetic patients.  相似文献   

11.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

12.
Fast atom bombardment mass spectrometry (FAB) was used to determine the glycation sites of lysozyme in a restricted water environment. A 30-day incubation at 25 degrees C, and 65% relative humidity (R.H.) resulted in glycation at lysine-1 while a much shorter (3-day) incubation at 50 degrees C and 65% R.H. resulted in diglycation at lysine-1 as well as glycation at lysine-13 and lysine-33.  相似文献   

13.
HARP (heparin affin regulatory peptide) is a growth factor displaying high affinity for heparin. In the present work, we studied the ability of human recombinant HARP as well as its two terminal peptides (HARP residues 1-21 and residues 121-139) to promote angiogenesis. HARP stimulates endothelial cell tube formation on matrigel, collagen and fibrin gels, stimulates endothelial cell migration and induces angiogenesis in the in vivo chicken embryo chorioallantoic membrane assay. The two HARP peptides seem to be involved in most of the angiogenic effects of HARP. They both stimulate in vivo angiogenesis and in vitro endothelial cell migration and tube formation on matrigel. We conclude that HARP has an angiogenic activity when applied exogenously in several in vitro and in vivo models of angiogenesis and its NH(2) and COOH termini seem to play an important role.  相似文献   

14.
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration.  相似文献   

15.
The nonenzymatic glycosylation (glycation) of Cu-Zn-superoxide dismutase led to gradual inactivation of the enzyme (Arai, K. Iizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Biochim. Biophys. Acta 924, 292-296). The purified superoxide dismutase from human erythrocytes comprises both glycated and nonglycated forms. The nonglycated Cu-Zn-superoxide dismutase was isolated by boronate affinity chromatography. Incubation of the nonglycated superoxide dismutase with D-[6-3H]glucose in vitro resulted in the gradual accumulation of radioactivity in the enzyme protein, and Schiff base adducts were trapped by NaBH4. The sites of glycation of the superoxide dismutase were identified by amino acid analysis after reverse-phase high performance liquid chromatography of the trypsin-treated peptides. Lysine residues, i.e. Lys3, Lys9, Lys30, Lys36, Lys122, and Lys128, were found to be glycated. Three of the glycated sites lie in Lys-Gly, two in Lys-Ala, and one in Lys-Val. The inactivation of the superoxide dismutase on the glycation is due mainly to the glycation of Lys122 and Lys128, which are supposed to be located in an active site liganding loop. The remaining five sites, such as Lys-Glu, Lys-Asp, Lys-His, and Lys-Thr are relatively inactive as to the formation of either a Schiff base or an Amadori adduct.  相似文献   

16.
The nonenzymatic glycation of basement membrane proteins, such as fibronectin and type IV collagen, occurs in diabetes mellitus. These proteins are nonenzymatically glycated in vivo and can also be nonenzymatically glycated in vitro. After 12 days of incubation at 37 degrees C with 500 mM glucose, purified samples of human plasma fibronectin and native type IV collagen showed a 13.0- and 4.2-fold increase, respectively, in glycated amino acid levels in comparison to control samples incubated in the absence of glucose. Gelatin (denatured calfskin collagen) was glycated 22.3-fold under the same conditions. Scatchard analyses were performed on the binding of radiolabeled fibronectin to gelatin or type IV collagen. It was found that there is a 3-fold reduction in the affinity of fibronectin to type IV collagen due to the nonenzymatic glycation of fibronectin. The dissociation constant (KD) for the binding of control fibronectin to type IV collagen was 9.6 X 10(-7) M while the KD for glycated fibronectin and type IV collagen was 2.9 X 10(-6) M. This was similar to the 2.7-fold reduction in the affinity of fibronectin for gelatin found as a result of the nonenzymatic glycation of fibronectin (KD of 4.5 X 10(-7) M for the interaction of control fibronectin with gelatin vs. KD of 1.2 X 10(-6) M for the interaction of nonenzymatically glycated fibronectin with gelatin). The molecular association of control fibronectin or its glycated counterpart with [3H]heparin was also determined. Scatchard analyses of this interaction showed no difference between control fibronectin and glycated fibronectin in [3H]heparin binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

18.
Heparin potentiates the mitogenic activity of FGF-1 by increasing the affinity for its receptor and by extending its biological half-life. During the course of labeling human FGF-1 with Na(125)I and chloramine T, it was observed that the protein lost its ability to bind to heparin. In contrast, bovine FGF-1 retained its heparin affinity even after iodination. To localize the region responsible for the lost heparin affinity, chimeric FGF-1 proteins were constructed from human and bovine FGF-1 expression constructs and tested for their heparin affinity after iodination. The results showed that the C-terminal region of human FGF-1 was responsible for the loss of heparin affinity. This region harbors a single tyrosine residue in human FGF-1 in contrast to a phenylalanine at this position in bovine FGF-1. Mutating this tyrosine residue in the human FGF-1 sequence to phenylalanine did not restore the heparin affinity of the iodinated protein. Likewise, changing the phenylalanine to tyrosine in the bovine FGF-1 did not reduce the ability of the iodinated protein to bind to heparin. In contrast, a mutant human FGF-1 that has cysteine-131 replaced with serine (C131S) was able to bind to heparin even after iodination while bovine FGF-1 (S131C) lost its binding affinity to heparin upon iodination. In addition, the human FGF-1 C131S mutant showed a decrease in homodimer formation when exposed to CuCl(2). Molecular modeling showed that the heparin-binding domain of FGF-1 includes cysteine-131 and that cysteine-131, upon oxidation to cysteic acid during the iodination procedures, would interact with lysine-126 and lysine-132. This interaction alters the conformation of the basic residues such that they no longer bind to heparin.  相似文献   

19.
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that attenuates brain and lung injury from oxidative stress. A polybasic region in the carboxyl terminus distinguishes EC-SOD from other superoxide dismutases and determines EC-SOD's tissue half-life and affinity for heparin. There are two types of EC-SOD that differ based on the presence or absence of this heparin-binding region. It has recently been shown that proteolytic removal of the heparin-binding region is an intracellular event (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). By using mammalian cell lines, we have now determined that removal of the heparin-binding region occurs after passage through the Golgi network but before being secreted into the extracellular space. Specific protease inhibitors and overexpression of intracellular proteases implicate furin as a processing protease. In vitro experiments using furin and purified EC-SOD suggest that furin proteolytically cleaves EC-SOD in the middle of the polybasic region and then requires an additional carboxypeptidase to remove the remaining lysines and arginines. A mutation in Arg(213) renders EC-SOD resistant to furin processing. These results indicate that furin-dependent processing of EC-SOD is important for determining the tissue distribution and half-life of EC-SOD.  相似文献   

20.
Extracellular superoxide dismutase (EC-SOD), the only known enzymatic scavenger of extracellular superoxide, may modulate reactions of nitric oxide (NO) in the lungs by preventing reactions between superoxide and NO. The regulation of EC-SOD has not been examined in developing lungs. We hypothesize that EC-SOD plays a pivotal role in the response to increased oxygen tension and NO in the neonatal lung. This study characterizes rabbit EC-SOD and investigates the developmental regulation of EC-SOD activity, protein expression, and localization. Purified rabbit EC-SOD was found to have several unique biochemical attributes distinct from EC-SOD in other species. Rabbit lung EC-SOD contains predominantly uncleaved subunits that do not form disulfide-linked dimers. The lack of intersubunit disulfide bonds may contribute to the decreased heparin affinity and lower EC-SOD content in rabbit lung. EC-SOD activity in rabbit lungs is low before birth and increases soon after gestation. In addition, the enzyme is localized intracellularly in preterm and term rabbit lungs. Secretion of active EC-SOD into the extracellular compartment increases with age. The changes in EC-SOD localization and activity have implications for the neonatal pulmonary response to oxidative stress and the biological activity of NO at birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号