首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
We have previously demonstrated that extracellular adenosine 5''-triphosphate (ATP) promotes breast cancer cell chemoresistance. However, the underlying mechanism remains unclear. Using a cDNA microarray, we demonstrated that extracellular ATP can stimulate hypoxia-inducible factor (HIF) signaling. In this study, we report that hypoxia-inducible factor 1α (HIF-1α) was upregulated after ATP treatment and mediated the ATP-driven chemoresistance process. We aimed to investigate the mechanisms and identify potential clinically relevant targets that are involved. Using mass spectrometry, we found that aldolase A (ALDOA) interacts with HIF-1α and increases HIF-1α expression. We then demonstrated that STAT3-ALDOA mediates ATP-HIF-1α signaling and upregulates the HIF-1 target genes adrenomedullin (ADM) and phosphoinositide-dependent kinase-1 (PDK1). Moreover, we show that PI3K/AKT acts upstream of HIF-1α in ATP signaling and contributes to chemoresistance in breast cancer cells. In addition, HIF-1α-knockdown or treatment with direct HIF inhibitors combined with the ATP hydrolase apyrase in MDA-MB-231 cells induced enhanced drug sensitivity in nude BALB/c mice. We then used in vitro spheroid formation assays to demonstrate the significance of ATP-HIF-1α in mediating chemoresistance. Furthermore, considering that indirect HIF inhibitors are effective in clinical cancer therapy, we treated tumor-bearing BALB/c mice with STAT3 and PI3K/AKT inhibitors and found that the dual-targeting strategy sensitized breast cancer to cisplatin. Finally, using breast cancer tissue microarrays, we found that ATP-HIF-1α signaling is associated with cancer progression, poor prognosis, and resistance to chemotherapy. Taken together, we suggest that HIF-1α signaling is vital in ATP-driven chemoresistance and may serve as a potential target for breast cancer therapies.Subject terms: Breast cancer, Cell signalling  相似文献   

7.
8.
Clear-cell renal cell carcinoma (RCC) is, in most cases, caused by loss of function of the tumor suppressor gene von Hippel–Lindau, resulting in constitutive activation of hypoxia-inducible factor (HIF)-1α and expression of hypoxia-induced genes in normoxic conditions. Clear-cell RCC cells are characterized histologically by accumulation of cholesterol, mainly in its ester form. The origin of the increased cholesterol remains unclear, but it is likely explained by an HIF-1α-driven imbalance between cholesterol uptake and excretion. Here, we showed that expression of the very low-density lipoprotein receptor (VLDL-R) was significantly increased in clear-cell RCC human biopsies compared with normal kidney tissue. Partial knockdown of HIF-1α in clear-cell RCC cells significantly reduced the VLDL-R expression, and knockdown of either HIF-1α or VLDL-R reduced the increased lipid accumulation observed in these cells. We also showed increased uptake of fluorescently labeled lipoproteins in clear-cell RCC cells, which was significantly reduced by knockdown of HIF-1α or VLDL-R. Taken together, our results support the concept that the pathological increase of HIF-1α in clear-cell RCC cells upregulates VLDL-R, which mediates increased uptake and accumulation of lipids. These results explain the morphological characteristics of clear-cell RCC, and open up novel possibilities for detection and treatment of clear-cell RCC.  相似文献   

9.
10.
Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists.  相似文献   

11.
The estrogen receptor (ER) β variant ERβ2 is expressed in aggressive castration-resistant prostate cancer and has been shown to correlate with decreased overall survival. Genome-wide expression analysis after ERβ2 expression in prostate cancer cells revealed that hypoxia was an overrepresented theme. Here we show that ERβ2 interacts with and stabilizes HIF-1α protein in normoxia, thereby inducing a hypoxic gene expression signature. HIF-1α is known to stimulate metastasis by increasing expression of Twist1 and increasing vascularization by directly activating VEGF expression. We found that ERβ2 interacts with HIF-1α and piggybacks to the HIF-1α response element present on the proximal Twist1 and VEGF promoters. These findings suggest that at least part of the oncogenic effects of ERβ2 is mediated by HIF-1α and that targeting of this ERβ2 – HIF-1α interaction may be a strategy to treat prostate cancer.  相似文献   

12.
It is well recognized that hypoxia-inducible factor 1 alpha (HIF-1α) is involved in cancer metastasis, chemotherapy and poor prognosis. We previously found that deferoxamine, a hypoxia-mimetic agent, induces epithelial-mesenchymal transition (EMT) in colorectal cancer. Therefore, here we explored a new molecular mechanism for HIF-1α contributing to EMT and cancer metastasis through binding to ZEB1. In this study, we showed that overexpression of HIF-1α with adenovirus infection promoted EMT, cell invasion and migration in vitro and in vivo. On a molecular level, HIF-1α directly binding to the proximal promoter of ZEB1 via hypoxia response element (HRE) sites thus increasing the transactivity and expression of ZEB1. In addition, inhibition of ZEB1 was able to abrogate the HIF-1α-induced EMT and cell invasion. HIF-1α expression was highly correlated with the expression of ZEB1 in normal colorectal epithelium, primary and metastatic CRC tissues. Interestingly, both HIF-1α and ZEB1 were positively associated with Vimentin, an important mesenchymal marker of EMT, whereas negatively associated with E-cadherin expression. These findings suggest that HIF-1α enhances EMT and cancer metastasis by binding to ZEB1 promoter in CRC. HIF-1α and ZEB1 are both widely considered as tumor-initiating factors, but our results demonstrate that ZEB1 is a direct downstream of HIF-1α, suggesting a novel molecular mechanism for HIF-1α-inducing EMT and cancer metastasis.  相似文献   

13.
While gene-directed enzyme prodrug therapy has shown potential as a cancer therapeutic in animal and clinical trials, concerns over the efficacy, selectivity, and safety of gene delivery vehicles have restricted its advance. In an attempt to relieve some of the demands on targeted gene delivery vehicles and achieve the full potential of enzyme prodrug therapy, cancer-targeted activity can be engineered into the enzyme itself. We previously engineered a switchable prodrug-activating enzyme that selectively kills human cancer cells accumulating the cancer marker hypoxia-inducible factor-1α (HIF-1α). This HIF-1α-activated protein switch (Haps59) is designed to increase its ability to convert the prodrug 5-fluorocytosine into the chemotherapeutic 5-fluorouracil in a HIF-1α-dependent manner. However, in cancer cell lines expressing Haps59 the 5FC sensitivity difference between the presence and absence of HIF-1α was not as large as desired. In this work, we aimed to improve the cancer specificity of this switch via a directed evolution approach utilizing random mutagenesis, linker mutagenesis, and random insertion and circular permutation. We identified improved HIF-1α-activated protein switches that confer E. coli with modest increases in HIF-1α-dependent 5FC toxicity. Additionally, the current bottleneck in the development of improved HIF-1α-activated protein switches is screening switch candidates in mammalian cells. To accommodate higher throughput and reduce experimental variability, we explored the use of Flp recombinase-mediated isogenic integration in 293 cells. These experiments raised the possibility that Haps59 can be activated by other interactors of the CH1 domain, and experiments in E. coli indicated that CITED2 can also activate Haps59. Although many CH1 binding partners are also oncogenes, CH1''s promiscuous binding and subsequent off-target activation of Haps59 needs to be examined under normal physiological conditions to identify off-target activators. With aberrant activating molecules identified, further directed evolution can be performed to improve the cancer specificity of HIF-1α-activated protein switches.  相似文献   

14.
15.
Hypoxia promotes tumor evolution and metastasis, and hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxia-related cellular processes in cancer. The eIF4E translation initiation factors, eIF4E1, eIF4E2, and eIF4E3, are essential for translation initiation. However, whether and how HIF-1α affects cap-dependent translation through eIF4Es in hypoxic cancer cells has been unknown. Here, we report that HIF-1α promoted cap-dependent translation of selective mRNAs through up-regulation of eIF4E1 in hypoxic breast cancer cells. Hypoxia-promoted breast cancer tumorsphere growth was HIF-1α-dependent. We found that eIF4E1, not eIF4E2 or eIF4E3, is the dominant eIF4E family member in breast cancer cells under both normoxia and hypoxia conditions. eIF4E3 expression was largely sequestered in breast cancer cells at normoxia and hypoxia. Hypoxia up-regulated the expression of eIF4E1 and eIF4E2, but only eIF4E1 expression was HIF-1α-dependent. In hypoxic cancer cells, HIF-1α-up-regulated eIF4E1 enhanced cap-dependent translation of a subset of mRNAs encoding proteins important for breast cancer cell mammosphere growth. In searching for correlations, we discovered that human eIF4E1 promoter harbors multiple potential hypoxia response elements. Furthermore, using chromatin immunoprecipitation (ChIP) and luciferase and point mutation assays, we found that HIF-1α utilized hypoxia response elements in the human eIF4E1 proximal promoter region to activate eIF4E1 expression. Our study suggests that HIF-1α promotes cap-dependent translation of selective mRNAs through up-regulating eIF4E1, which contributes to tumorsphere growth of breast cancer cells at hypoxia. The data shown provide new insights into protein synthesis mechanisms in cancer cells at low oxygen levels.  相似文献   

16.
17.
The regulation of DNA repair enzymes is crucial for cancer prevention, initiation, and therapy. We have studied the effect of ultraviolet B (UVB) radiation on the expression of the two nucleotide excision repair factors (XPC and XPD) in human keratinocytes. We show that hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of XPC and XPD. Early UVB-induced downregulation of HIF-1α increased XPC mRNA expression due to competition between HIF-1α and Sp1 for their overlapping binding sites. Late UVB-induced enhanced phosphorylation of HIF-1α protein upregulated XPC mRNA expression by direct binding to a separate hypoxia response element (HRE) in the XPC promoter region. HIF-1α also regulated XPD expression by binding to a region of seven overlapping HREs in its promoter. Quantitative chromatin immunoprecipitation assays further revealed putative HREs in the genes encoding other DNA repair proteins (XPB, XPG, CSA and CSB), suggesting that HIF-1α is a key regulator of the DNA repair machinery. Analysis of the repair kinetics of 6-4 photoproducts and cyclobutane pyrimidine dimers also revealed that HIF-1α downregulation led to an increased rate of immediate removal of both photolesions but attenuated their late removal following UVB irradiation, indicating the functional effects of HIF-1α in the repair of UVB-induced DNA damage.  相似文献   

18.
Gastric cancer grows under a hypoxic environment. HIF-1α is known to play an important role in controlling the production of reactive oxygen species (ROS) in the mitochondria under hypoxic conditions. We previously established HIF-1α knockdown (KD) cells and control (SC) cells in the 58As9 gastric cancer cell line. In this study, we revealed that KD cells, but not SC cells, induced apoptosis under conditions of hypoxia (1% O2) due to excessive production of ROS. A quantitative RT-PCR analysis demonstrated that the expressions of ten genes, which are involved in the control mechanisms of ROS (including the Warburg effect, mitophagy, electron transport chain [ETC] modification and ROS scavenging), were regulated by HIF-1α. Moreover, the promotion of glucose uptake by glucose plus insulin (GI) treatment enhanced the apoptotic effect, which was accompanied by further ROS production in hypoxic KD cells. A Western blot analysis showed that the membranous expression of GLUT1 in KD cells was elevated by glucose and/or insulin treatments, indicating that the GI-induced glucose uptake is mediated by the increased translocation of GLUT1 on the cell membrane. Finally, the anti-tumor effect of HIF-1α knockdown (KD) plus GI was evaluated using a tumor xenograft model, where a hypoxic environment naturally exists. As a result, the GI treatment strongly inhibited the growth of the KD tumors whereby cell apoptosis was highly induced in comparison to the control treatment. In contrast, the growth of the SC tumors expressing HIF-1α was not affected by the GI treatment. Taken together, the results suggest that HIF-1α inhibition plus GI may be an ideal therapy, because the apoptosis due to the destruction of ROS homeostasis is specifically induced in gastric cancer that grows under a hypoxic environment, but not in the normal tissue under the aerobic conditions.  相似文献   

19.
20.
MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号