首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone). Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole (“inclusion”). The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.  相似文献   

3.
4.
The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB. Here, we identified a novel protein encoded by the dr1245 gene as an interacting partner of DdrB. A strain devoid of the DR1245 protein is impaired in growth, exhibiting a generation time approximately threefold that of the wild type strain while radioresistance is not affected. We determined the three-dimensional structure of DR1245, revealing a relationship with type III secretion system chaperones and YbjN family proteins. Thus, DR1245 may display some chaperone activity towards DdrB and possibly other substrates.  相似文献   

5.
Vibrio parahaemolyticus harbors two type III secretion systems (T3SSs; T3SS1 and T3SS2), of which T3SS1 is involved in host cell cytotoxicity. T3SS1 expression is positively regulated by ExsA, and it is negatively regulated by ExsD. We compared the secretion profiles of a wild-type strain (NY-4) of V. parahaemolyticus with those of an ExsD deletion mutant (ΔexsD) and with a strain of NY-4 that overexpresses T3SS1 (NY-4:pexsA). From this comparison, we detected a previously uncharacterized protein, Vp1659, which shares some sequence homology with LcrV from Yersinia. We show that vp1659 expression is positively regulated by ExsA and is negatively regulated by ExsD. Vp1659 is specifically secreted by T3SS1 of V. parahaemolyticus, and Vp1659 is not required for the successful extracellular secretion of another T3SS1 protein, Vp1656. Mechanical fractionation showed that Vp1659 is translocated into HeLa cells in a T3SS1-dependent manner and that deletion of Vp1659 does not prevent VopS from being translocated into HeLa cells during infection. Deletion of vp1659 significantly reduces cytotoxicity when HeLa cells are infected by V. parahaemolyticus, while complementation of the Δvp1659 strain restores cytotoxicity. Differential staining showed that Vp1659 is required to induce membrane permeability in HeLa cells. We also show evidence that Vp1659 is required for actin rearrangement and the induction of autophagy. On the basis of these data, we conclude that Vp1659 is a T3SS1-associated protein that is a component of the secretion apparatus and that it is necessary for the efficient translocation of effector proteins into epithelial cells.As a marine pathogen, Vibrio parahaemolyticus is frequently isolated from seafood products such as oysters and shrimp (19, 45). The main symptoms of V. parahaemolyticus infection in humans include diarrhea, nausea, and vomiting. In addition to the gastrointestinal infection, necrotizing fasciitis and septic shock are reportedly associated with V. parahaemolyticus infection (37). V. parahaemolyticus can also cause wound infections after contact with contaminated water (6, 7, 16, 37).V. parahaemolyticus is able to adhere to and invade epithelial cells (1, 38, 43). Pili are involved in the adherence to the intestinal epithelium (32), but it is not clear what factors are required for V. parahaemolyticus to invade epithelial cells. Hemolysins are considered primary factors involved in the pathogenesis of V. parahaemolyticus. For example, a thermostable direct hemolysin (tdh) mutant strain loses the ability to cause fluid accumulation in the intestinal lumen (33), while deletion of a tdh-related gene (trh) results in the complete loss of hemolysis and the partial loss of fluid accumulation in a rabbit intestinal ligation model (42). Recent studies show that the disruption of epithelial tight junctions, which is a hallmark of bacterial dissemination into the circulatory system and subsequent septicemia, is independent of the thermostable direct hemolysin, suggesting that additional factors are required for the pathogenesis of V. parahaemolyticus (27).A broad range of Gram-negative bacteria employ type III secretion systems (T3SSs) to export virulence-related proteins into the extracellular milieu and/or to deliver these proteins directly into host cells (5, 12, 13). T3SSs are composed of three parts: a secretion apparatus, translocators, and effectors (17, 18). The secretion apparatus and translocators are encoded by ca. 25 genes that are conserved and usually located in a genomic island. Genes that encode effectors are less conserved and can be found distal from the T3SS islands. The secretion apparatus serves to secrete both effectors and translocators from bacterial cells, and translocators help the effectors cross into the eukaryotic cells, where they can disrupt normal host cell signal functions.Two distinct T3SSs (T3SS1 and T3SS2) were identified in the genome of V. parahaemolyticus (28). On the basis of the sequence similarity and gene organization, T3SS1 was classified as a member of the Ysc family of secretion systems, while T3SS2 was classified as a member of the Inv-Mxi-Spa family (40). Functional analysis shows that deletion of T3SS1 decreases cytotoxicity against HeLa cells, while deletion of T3SS2 diminishes intestinal fluid accumulation (35). Interestingly, in some strains, T3SS2 can be involved in the cytotoxic effect specifically against Caco-2 and HCT-8 cells (23). One study showed that T3SS1 of V. parahaemolyticus induces autophagy, but blocking autophagy does not completely mitigate cytotoxicity, indicating that other T3SS1-induced mechanisms contribute to cell death (3, 4). Recent work from our laboratory showed that V. parahaemolyticus induces cell rounding, pore formation, and membrane damage, consistent with the induction of an oncosis pathway (46). Importantly, treatment of infected cells with an osmoprotectant (polyethylene glycol 3350) significantly reduced cytotoxicity, indicating that oncosis is the primary mechanism by which T3SS1 of V. parahaemolyticus causes cell death for in vitro cultures (46). Nevertheless, it is unknown which effector protein(s) is involved in cell cytotoxicity. By comparing the secretion protein profiles of wild-type and T3SS1 mutant strains, four T3SS1 proteins have been identified (34). Among these, Vp1680 is translocated into host cells and is required for the induction of autophagy during infection of HeLa cells (3, 34). Recent studies showed that VopS is able to prevent the interaction of Rho GTPase with its downstream factors by a new modification mechanism, called AMPylation (44), and this prevents the assembly of actin fibers. Two proteins (VopT and VopL) have been identified as T3SS2 substrates (23, 26). VopT is a member of ADP-ribosyltransferase and is partially responsible for the cytotoxic effect specific to Caco-2 and HCT-8 cells (23). VopL induces the assembly of actin stress fibers (26) and is potentially responsible for the internalization of V. parahaemolyticus into Caco-2 cells (1). Many other potential effector proteins are encoded proximal to T3SS1 and T3SS2 apparatus genes, but these have not been functionally characterized. The function of structural genes has not been extensively studied for either T3SS1 or T3SS2 in V. parahaemolyticus.T3SSs are expressed after contact with host cells or when cells are grown under inducing conditions (17). Expression of T3SS1 in V. parahaemolyticus is induced when bacteria are grown in tissue culture medium (Dulbecco''s minimal essential medium [DMEM]), although the secretion of one substrate (Vp1656) was not detected under this condition, probably due to the low detection sensitivity (47). T3SS1 genes are not expressed when bacteria are grown in LB medium supplemented with 2.5% NaCl (LB-S). Disruption of the exsD gene or overexpression of exsA results in the constitutive expression of T3SS1 genes and the secretion of Vp1656 even when bacteria are grown in LB-S (47). For the present study, we took advantage of these regulatory mechanisms and compared the proteins secreted by the NY-4 (wild type), ΔexsD, ΔexsD::pexsD (exsD complement), and NY-4:pexsA strains. We identified two proteins (VopS and Vp1659) that are present in the supernatants of the ΔexsD and NY-4:pexsA strains but that are absent in the supernatants of the NY-4 and ΔexsD::pexsD strains. Herein we demonstrate that Vp1659 is secreted into the extracellular milieu and is translocated into HeLa cells by T3SS1. Functional analysis is consistent with the hypothesis that Vp1659 plays a role in actin rearrangement and induction of cytotoxicity and autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号