首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling.

Results

Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster.

Conclusions

Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1763-2) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16–β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.  相似文献   

4.
The Cus system of Escherichia coli aids in protection of cells from high concentrations of Ag(I) and Cu(I). The histidine kinase CusS of the CusRS two-component system functions as a Ag(I)/Cu(I)-responsive sensor kinase and is essential for induction of the genes encoding the CusCFBA efflux pump. In this study, we have examined the molecular features of the sensor domain of CusS in order to understand how a metal-responsive histidine kinase senses specific metal ions. We find that the predicted periplasmic sensor domain of CusS directly interacts with Ag(I) ions and undergoes a conformational change upon metal binding. Metal binding also enhances the tendency of the domain to dimerize. These findings suggest a model for activation of the histidine kinase through metal binding events in the periplasmic sensor domain.  相似文献   

5.
Sensor histidine kinases of two-component signal-transduction systems are essential for bacteria to adapt to variable environmental conditions. However, despite their prevalence, it is not well understood how extracellular signals such as ligand binding regulate the activity of these sensor kinases. CitA is the sensor histidine kinase in Klebsiella pneumoniae that regulates the transport and anaerobic metabolism of citrate in response to its extracellular concentration. We report here the X-ray structures of the periplasmic sensor domain of CitA in the citrate-free and citrate-bound states. A comparison of the two structures shows that ligand binding causes a considerable contraction of the sensor domain. This contraction may represent the molecular switch that activates transmembrane signaling in the receptor.  相似文献   

6.
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two-partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.  相似文献   

7.
The primary technical constraint plant scientists face in generating insect resistant transgenic crops with insecticidal Bacillus thuringiensis (Bt) crystal protein (Cry) genes remains failing to generate sufficiently large numbers of effective resistant transgenic plant lines. One possible means to overcome this challenge is through deployment of a Cry toxin gene that contains high levels of insecticidal specific activity for target insect pests. In the present study, we tested this hypothesis using a natural variant of the Cry1Ab toxin under laboratory conditions that possessed increased insecticidal potency against the yellow stem borer (YSB, Scirpophaga incertulus), one of the most damaging rice insect pests. Following adoption of a stringent selection strategy for YSB resistant transgenic rice lines under field conditions, results showed recovery of a significantly higher number of YSB resistant independent transgenic plant lines with the variant cry1Ab gene relative to transgenic plant lines harbouring cry1Ab berliner gene. Structural homology modelling of the variant toxin peptide with the Cry1Aa toxin molecule, circular dichroism spectral analysis, and hydropathy plot analysis indicated that serine substitution by phenylalanine at amino acid position 223 of the Cry1Ab toxin molecule resulted in a changed role for α-helix 7 in domain I of Cry1Ab for enhanced toxicity.  相似文献   

8.
Anthrax toxin and capsule, determinants for successful infection by Bacillus anthracis, are encoded on the virulence plasmids pXO1 and pXO2, respectively. Each of these plasmids also encodes proteins that are highly homologous to the signal sensor domain of a chromosomally encoded major sporulation sensor histidine kinase (BA2291) in this organism. B. anthracis Sterne overexpressing the plasmid pXO2-61-encoded signal sensor domain exhibited a significant decrease in sporulation that was suppressed by the deletion of the BA2291 gene. Expression of the sensor domains from the pXO1-118 and pXO2-61 genes in Bacillus subtilis strains carrying the B. anthracis sporulation sensor kinase BA2291 gene resulted in BA2291-dependent inhibition of sporulation. These results indicate that sporulation sensor kinase BA2291 is converted from an activator to an inhibitor of sporulation in its native host by the virulence plasmid-encoded signal sensor domains. We speculate that activation of these signal sensor domains contributes to the initiation of B. anthracis sporulation in the bloodstream of its infected host, a salient characteristic in the virulence of this organism, and provides an additional role for the virulence plasmids in anthrax pathogenesis.  相似文献   

9.
Specificity of Bacillus thuringiensis Delta-Endotoxin   总被引:5,自引:1,他引:4       下载免费PDF全文
The insecticidal activity of the delta-endotoxins of 14 Bacillus thuringiensis strains belonging to 12 subspecies was determined against Pieris brassicae, Heliothis virescens, and Spodoptera littoralis. Larvae of P. brassicae were highly susceptible to purified crystals of strains of B. thuringiensis subsp. thuringiensis and B. thuringiensis subsp. morrisoni, whereas H. virescens responded best to B. thuringiensis subsp. kenyae and B. thuringiensis subsp. kurstaki. The crystals of the B. thuringiensis subsp. entomocidus strain were the most potent against S. littoralis. It was shown that the solubility of the crystals within the gut of the three insect species is a first important step in the mode of action. Predissolution of the crystals especially enhanced the insecticidal activity against H. virescens. When in vitro-activated toxins were applied, the relative potency range varied greatly from one insect species to another. It can be concluded that at least three factors influence the potency of B. thuringiensis delta-endotoxins: the strain-related origin of the toxin, the degree of solubility of the crystals in the gut juice, and the intrinsic susceptibility of the insect to the toxin.  相似文献   

10.
Signal transduction proteins are organized into sensor (input) domains that perceive a signal and, in response, regulate the biological activity of effector (output) domains. We reprogrammed the input signal specificity of a normally oxygen-sensitive, light-inert histidine kinase by replacing its chemosensor domain by a light-oxygen-voltage photosensor domain. Illumination of the resultant fusion kinase YF1 reduced net kinase activity by ∼ 1000-fold in vitro. YF1 also controls gene expression in a light-dependent manner in vivo. Signals are transmitted from the light-oxygen-voltage sensor domain to the histidine kinase domain via a 40°-60° rotational movement within an α-helical coiled-coil linker; light is acting as a rotary switch. These signaling principles are broadly applicable to domains linked by α-helices and to chemo- and photosensors. Conserved sequence motifs guide the rational design of light-regulated variants of histidine kinases and other proteins.  相似文献   

11.
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.  相似文献   

12.
13.
The Rhizobium meliloti exoS gene is involved in regulating the production of succinoglycan, which plays a crucial role in the establishment of the symbiosis between R. meliloti Rm1021 and its host plant, alfalfa. The exoS96::Tn5 mutation causes the upregulation of the succinoglycan biosynthetic genes, thereby resulting in the overproduction of succinoglycan. Through cloning and sequencing, we found that the exoS gene is a close homolog of the Agrobacterium tumefaciens chvG gene, which has been proposed to encode the sensor protein of the ChvG-ChvI two-component regulatory system, a member of the EnvZ-OmpR family. Further analyses revealed the existence of a newly discovered A. tumefaciens chvI homolog located just upstream of the R. meliloti exoS gene. R. meliloti ChvI may serve as the response regulator of ExoS in a two-component regulatory system. By using ExoS-specific antibodies, it was found that the ExoS protein cofractionated with membrane proteins, suggesting that it is located in the cytoplasmic membrane. By using the same antibodies, it was shown that the exoS96::Tn5 allele encodes an N-terminal truncated derivative of ExoS. The cytoplasmic histidine kinase domain of ExoS was expressed in Escherichia coli and purified, as was the R. meliloti ChvI protein. The ChvI protein autophosphorylated in the presence of acetylphosphate, and the ExoS cytoplasmic domain fragment autophosphorylated at a histidine residue in the presence of ATP. The ChvI protein was phosphorylated in the presence of ATP only when the histidine kinase domain of ExoS was also present. We propose a model for regulation of succinoglycan production by R. meliloti through the ExoS-ChvI two-component regulatory system.  相似文献   

14.
The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.  相似文献   

15.
Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2) of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%). The TccC protein, a component of the toxin complex (Tc), plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0). TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3.  相似文献   

16.
17.
Both the bacterium Photorhabdus luminescens alone and its symbiotic Photorhabdus-nematode complex are known to be highly pathogenic to insects. The nature of the insecticidal activity of Photorhabdus bacteria was investigated for its potential application as an insect control agent. It was found that in the fermentation broth of P. luminescens strain W-14, at least two proteins, toxin A and toxin B, independently contributed to the oral insecticidal activity against Southern corn rootworm. Purified toxin A and toxin B exhibited single bands on native polyacrylamide gel electrophoresis and two peptides of 208 and 63 kDa on SDS-polyacrylamide gel electrophoresis. The native molecular weight of both the toxin A and toxin B was determined to be approximately 860 kDa, suggesting that they are tetrameric. NH2-terminal amino acid sequencing and Western analysis using monospecific antibodies to each toxin demonstrated that the two toxins were distinct but homologous. The oral potency (LD50) of toxin A and toxin B against Southern corn rootworm larvae was determined to be similar to that observed with highly potent Bt toxins against lepidopteran pests. In addition, it was found that the two peptides present in toxin B could be processed in vitro from a 281-kDa protoxin by endogenous P. luminescens proteases. Proteolytic processing was shown to enhance insecticidal activity.  相似文献   

18.
The biocontrol strain Pseudomonas sp. Cab57 was isolated from the rhizosphere of shepherd’s purse growing in a field in Hokkaido by screening the antibiotic producers. The whole genome sequence of this strain was obtained by paired-end and whole-genome shotgun sequencing, and the gaps between the contigs were closed using gap-spanning PCR products. The P. sp. Cab57 genome is organized into a single circular chromosome with 6,827,892 bp, 63.3% G+C content, and 6,186 predicted protein-coding sequences. Based on 16S rRNA gene analysis and whole genome analysis, strain Cab57 was identified as P. protegens. As reported in P. protegens CHA0 and Pf-5, four gene clusters (phl, prn, plt, and hcn) encoding the typical antibiotic metabolites and the reported genes associated with Gac/Rsm signal transduction pathway of these strains are fully conserved in the Cab57 genome. Actually strain Cab57 exhibited typical Gac/Rsm activities and antibiotic production, and these activities were enhanced by knocking out the retS gene (for a sensor kinase acting as an antagonist of GacS). Two large segments (79 and 115 kb) lacking in the Cab57 genome, as compared with the Pf-5 genome, accounted for the majority of the difference (247 kb) between these genomes. One of these segments was the complete rhizoxin analog biosynthesis gene cluster (ca. 79 kb) and another one was the 115-kb mobile genomic island. A whole genome comparison of those relative strains revealed that each strain has unique gene clusters involved in metabolism such as nitrite/nitrate assimilation, which was identified in the Cab57 genome. These findings suggest that P. protegens is a ubiquitous bacterium that controls its biocontrol traits while building up strain-specific genomic repertoires for the biosynthesis of secondary metabolites and niche adaptation.  相似文献   

19.
The crystal δ-endotoxins of Bacillus thuringiensis (Bt) are a family of insecticidal proteins which have been known for some time to kill insects by lysing their gut epithelial cells, but the precise molecular mechanism of toxicity has remained elusive. The recent publication of the crystal structure of a Bt δ-endotoxin has made it possible for us to model the molecular events that occur as the toxin binds to its receptor and inserts into the membrane to form a pore. Using our knowledge of insect gut physiology, we can also predict the effect on the insect of the formation of a toxic pore. We present a new model to explain the events that occur in the insect gut during toxin action.  相似文献   

20.
Environmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.Subject terms: Bacteriophages, Environmental microbiology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号