首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a methodology for extracting characteristic properties of a fitness landscape of interest by analyzing fitness data on an in vitro molecular evolution. The in vitro evolution is required to be conducted as the following "adaptive walk": a single parent sequence generates N mutant sequences as its offsprings, and the fittest individual among the N offsprings will become a new parent in the next generation. N is the library size of mutants to be screened in a single generation. Our theory of the adaptive walk on the "NK landscape" suggests the following: the adaptive walker starting from a random sequence climbs the landscape easily in an early stage, and then reaches a stationary phase in which the mutation-selection-random drift balance sets in. The stationary fitness value is nearly proportional to square root of ln N. Our analysis is performed from the following points: (1) stationary fitness values, (2) time series of fitness in the transitional state, (3) mutant's fitness distribution, and (4) the strength of selection pressure. Applying our methodology, we analyzed experimental data on the in vitro evolution of a random polypeptide (139 amino acids) toward acquiring infectivity (= ability to infect) of fd phage. As a result, we estimated that k is about 27 in this system, indicating that an arbitrary residue in a sequence is affected from other 23% residues. In this article, we demonstrated that the experimental data is consistent with our theoretical equations quantitatively, and that our methodology for extracting characteristic properties of a fitness landscape may be effective.  相似文献   

2.
A theory for describing evolution as adaptive walks by a finite population with M walkers (M ≥ 1) on an anisotropic Mt. Fuji-type fitness landscape is presented, from a thermodynamical point of view. Introducing the ‘free fitness’ as the sum of a fitness term and an entropy term and ‘evolutionary force’ as the gradient of free fitness on a fitness coordinate, we demonstrate that the behavior of these theoretical walkers is almost consistent with the thermodynamical schemes. The major conclusions are as follows: (1) an adaptive walk (=evolution) is driven by an evolutionary force in the direction in which free fitness increases; (2) the expectation of the climbing rate obeys an equation analogous to the Einstein relation in Brownian motion; (3) the standard deviation of the climbing rate is a quantity analogous to the mean thermal energy of a particle, kT (×constant). In addition, on the interpretation that the walkers climb the landscape by absorbing ‘fitness information’ from the surroundings, we succeeded in quantifying the fitness information and formulating a macroscopic scheme from an informational point of view.  相似文献   

3.
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.  相似文献   

4.
We derive an expression for the variation between parallel trajectories in phenotypic evolution, extending the well known result that predicts the mean evolutionary path in adaptive dynamics or quantitative genetics. We show how this expression gives rise to the notion of fluctuation domains-parts of the fitness landscape where the rate of evolution is very predictable (due to fluctuation dissipation) and parts where it is highly variable (due to fluctuation enhancement). These fluctuation domains are determined by the curvature of the fitness landscape. Regions of the fitness landscape with positive curvature, such as adaptive valleys or branching points, experience enhancement. Regions with negative curvature, such as adaptive peaks, experience dissipation. We explore these dynamics in the ecological scenarios of implicit and explicit competition for a limiting resource.  相似文献   

5.
自然选择理论认为生物个体或者种群在进化的过程中, 其基因或者性状、行为策略的选择一定是能够提高其适合度或者达到某个可期的“目标”。然而, 随着某个突变基因或者性状特征、行为策略在种群中扩散, 其期望收益将随着其在种群中分布的密度变化或环境改变而发生改变, 这就是适合度景观的悖论, 即静态的、固定可期望的收益可能因此而不存在。基于动态而非静态适合度景观的概念, 我们提出路径依赖的自然选择概念。路径依赖的自然选择过程中, 一个突变的基因或表型在某种环境下随机产生, 但是该基因或表型在某些特定环境下会产生正反馈。尤其是在正反馈与随机漂变的共同作用下, 多条路径的演化就可能发生, 并且其路径的形成将同时受到其种群进化历史过程和空间特征分布等因素的强烈影响。而在不同路径下, 由于观测维度、角度和尺度的不同, 适合度意义将因此而存在不同。在此意义下, 自然选择更可能选择路径频率而不是适合度大小。基于上述概念, 我们借鉴现代物理学中复函数的方法, 来描述多重动力对物种形成或者生物特征、种群进化等路径依赖的演化过程, 以期为同域物种、隐存种形成以及生物多样性演化提供解释机制。  相似文献   

6.
We study the interplay of ecological and evolutionary dynamics in communities composed of populations with contrasting time-scales. In such communities, genetic variation of individual traits can cause population transitions between stationary and cyclic ecological regimes, hence abrupt variations in fitness. Such abrupt variations raise ridges in the adaptive landscape, where the populations are poised between equilibrium and cyclic coexistence and along which evolutionary trajectories can remain sliding for long times or halt at special points called evolutionary pseudo-equilibria. These novel phenomena should be generic to all systems in which ecological interactions cause fitness to vary discontinuously. They are demonstrated by the analysis of a predator-prey community, with one adaptive trait for each population. The eco-evolutionary dynamics of the system show a number of other distinctive features, including evolutionary extinction and two forms of Red Queen dynamics. One of them is characterized by intermittent bouts of cyclic oscillations of the two populations.  相似文献   

7.
In our previous report [Aita, T., Morinaga, S., Hosimi, Y., 2004. Thermodynamical interpretation of evolutionary dynamics on a fitness landscape in an evolution reactor I. Bull. Math. Biol. 66, 1371–1403], an analogy between thermodynamics and adaptive walks on a Mt. Fuji-type fitness landscape in an artificial selection system was presented. Introducing the ‘free fitness’ as the sum of a fitness term and an entropy term and ‘evolutionary force’ as the gradient of free fitness on a fitness coordinate, we demonstrated that the adaptive walk (=evolution) is driven by the evolutionary force in the direction in which free fitness increases. In this report, we examine the effect of various modifications of the original model on the properties of the adaptive walk. The modifications were as follows: first, mutation distance d was distributed obeying binomial distribution; second, the selection process obeyed the natural selection protocol; third, ruggedness was introduced to the landscape according to the NK model; fourth, a noise was included in the fitness measurement. The effect of each modification was described in the same theoretical framework as the original model by introducing ‘effective’ quantities such as the effective mutation distance or the effective screening size.  相似文献   

8.
It was recently conjectured by H.A. Orr that from a random initial point on a random fitness landscape of alphabetic sequences with one-mutation adjacency, chosen from a larger class of landscapes, no adaptive algorithm can arrive at a local optimum in fewer than on average e-1 steps. Here, using an example in which the mean number of steps to a local optimum equals (A-1)/A, where A is the number of distinct "letters" in the "alphabet" from which sequences are constructed, it is shown that as originally stated, the conjecture does not hold. It is also demonstrated that (A-1)/A is a sharp minimum on the mean number of steps taken in adaptive walks on fitness landscapes of alphabetic sequences with one-mutation adjacency. As the example that achieves the new lower bound has properties that are not often considered as potential attributes for fitness landscapes-non-identically distributed fitnesses and negative fitness correlations for adjacent points-a weaker set of conditions characteristic of more commonly studied fitness landscapes is proposed under which the lower bound on the mean length of adaptive walks is conjectured to equal e-1.  相似文献   

9.
We examined properties of adaptive walks by the fittest on “rough Mt. Fuji-type” fitness landscapes, which are modeled by superposing small uncorrelated random component on an additive fitness landscape. A single adaptive walk is carried out by repetition of the evolution cycle composed of (1) mutagenesis process that produces random d-fold point mutants of population size N and (2) selection process that picks out the fittest mutant among them. To comprehend trajectories of the walkers, the fitness landscape is mapped into a (x, y, z)-space, where x, y and z represent, respectively, normalized Hamming distance from the peak on the additive fitness landscape, scaled additive fitness and scaled non-additive fitness. Thus a single adaptive walk is expressed as the dynamics of a particle in this space. We drew the “hill-climbing” vector field, where each vector represents the most probable step for a walker in a single step. Almost all of the walkers are expected to move along streams of vectors existing on a particular surface that overlies the (x, y)-plane, toward the neighborhood of a characteristic point at which a mutation-selection-random drift balance is reached. We could theoretically predict this reachable point in the case of random sampling search strategy. Received: 1 March 2000 / Published online: 3 August 2000  相似文献   

10.
The fitness landscape captures the relationship between genotype and evolutionary fitness and is a pervasive metaphor used to describe the possible evolutionary trajectories of adaptation. However, little is known about the actual shape of fitness landscapes, including whether valleys of low fitness create local fitness optima, acting as barriers to adaptive change. Here we provide evidence of a rugged molecular fitness landscape arising during an evolution experiment in an asexual population of Saccharomyces cerevisiae. We identify the mutations that arose during the evolution using whole-genome sequencing and use competitive fitness assays to describe the mutations individually responsible for adaptation. In addition, we find that a fitness valley between two adaptive mutations in the genes MTH1 and HXT6/HXT7 is caused by reciprocal sign epistasis, where the fitness cost of the double mutant prohibits the two mutations from being selected in the same genetic background. The constraint enforced by reciprocal sign epistasis causes the mutations to remain mutually exclusive during the experiment, even though adaptive mutations in these two genes occur several times in independent lineages during the experiment. Our results show that epistasis plays a key role during adaptation and that inter-genic interactions can act as barriers between adaptive solutions. These results also provide a new interpretation on the classic Dobzhansky-Muller model of reproductive isolation and display some surprising parallels with mutations in genes often associated with tumors.  相似文献   

11.
12.
An in vitro evolution is a simplified Darwinian evolution in well-controlled surroundings. This evolution process can be modeled as a hill-climbing or adaptive walk on a fitness landscape in sequence space. The evolving molecular system gains at least two kinds of information originating from the converged sequences and the fitness increment of the evolving biopolymer as the adaptive walker. These two represent two aspects of the biomolecular information, its extent and its content, respectively. Here, we review studies related to formulation of the “content” and “extent” of biomolecular information. The two aspects are interconnected through physicochemical properties of the biopolymer, contrary to the case of conventional information, which seems to be independent of matter. The interconnection was analyzed based on the analogy between the evolution process and thermodynamics. The linear combination of the two by a temperature-like fluctuation factor resulted in a free-energy-like monotonically increasing function during the evolution process.  相似文献   

13.
14.
Stability criteria have recently been developed for coevolutionary Lotka-Volterra systems where individual fitness functions are assumed to be linear in the population state. We extend these criteria as part of a general theory of coevolution (that combines effects of ecology and evolution) based on arbitrary (i.e. nonlinear) fitness functions and a finite number of individual phenotypes. The central role of the stationary density surface where species' densities are at equilibrium is emphasized. In particular, for monomorphic resident systems, it is shown coevolutionary stability is equivalent to ecological stability combined with evolutionary stability on the stationary density surface. Also discussed is how our theory relates to recent treatments of phenotypic coevolution via adaptive dynamics when there is a continuum of individual phenotypes.  相似文献   

15.
The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA(W). Mean absolute fitness, , is predicted to change at the rate , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA(W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA(W) and in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA(W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting “evolutionary rescue,” where selection on standing VA(W) was expected to increase fitness of declining populations (< 1.0) to levels consistent with population sustainability and growth. Within populations, inter‐annual differences in genetic expression of fitness were striking. Significant genotype‐by‐year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA(W). By directly estimating VA(W) and total lifetime , our study presents an experimental approach for studies of adaptive capacity in the wild.  相似文献   

16.
Performance surfaces and adaptive landscapes   总被引:3,自引:1,他引:2  
  相似文献   

17.
Jain K  Krug J 《Genetics》2007,175(3):1275-1288
We study the adaptation dynamics of an initially maladapted asexual population with genotypes represented by binary sequences of length L. The population evolves in a maximally rugged fitness landscape with a large number of local optima. We find that whether the evolutionary trajectory is deterministic or stochastic depends on the effective mutational distance d(eff) up to which the population can spread in genotype space. For d(eff) = L, the deterministic quasi-species theory operates while for d(eff) < 1, the evolution is completely stochastic. Between these two limiting cases, the dynamics are described by a local quasi-species theory below a crossover time T(x) while above T(x) the population gets trapped at a local fitness peak and manages to find a better peak via either stochastic tunneling or double mutations. In the stochastic regime d(eff) < 1, we identify two subregimes associated with clonal interference and uphill adaptive walks, respectively. We argue that our findings are relevant to the interpretation of evolution experiments with microbial populations.  相似文献   

18.
Stability criteria have recently been developed for coevolutionary Lotka–Volterra systems where individual fitness functions are assumed to be linear in the population state. We extend these criteria as part of a general theory of coevolution (that combines effects of ecology and evolution) based on arbitrary (i.e. nonlinear) fitness functions and a finite number of individual phenotypes. The central role of the stationary density surface where species’ densities are at equilibrium is emphasized. In particular, for monomorphic resident systems, it is shown coevolutionary stability is equivalent to ecological stability combined with evolutionary stability on the stationary density surface. Also discussed is how our theory relates to recent treatments of phenotypic coevolution via adaptive dynamics when there is a continuum of individual phenotypes.  相似文献   

19.
Molecular evolutionary theory predicts that the ratio of autosomal to X-linked adaptive substitution (K(A)/K(x)) is primarily determined by the average dominance coefficient of beneficial mutations. Although this theory has profoundly influenced analysis and interpretation of comparative genomic data, its predictions are based upon two unverified assumptions about the genetic basis of adaptation. The theory assumes that 1) the rate of adaptively driven molecular evolution is limited by the availability of beneficial mutations, and 2) the scaling of evolutionary parameters between the X and the autosomes (e.g., the beneficial mutation rate, and the fitness effect distribution of beneficial alleles, per X-linked versus autosomal locus) is constant across molecular evolutionary timescales. Here, we show that the genetic architecture underlying bouts of adaptive substitution can influence both assumptions, and consequently, the theoretical relationship between K(A)/K(x) and mean dominance. Quantitative predictions of prior theory apply when 1) many genomically dispersed genes potentially contribute beneficial substitutions during individual steps of adaptive walks, and 2) the population beneficial mutation rate, summed across the set of potentially contributing genes, is sufficiently small to ensure that adaptive substitutions are drawn from new mutations rather than standing genetic variation. Current research into the genetic basis of adaptation suggests that both assumptions are plausibly violated. We find that the qualitative positive relationship between mean dominance and K(A)/K(x) is relatively robust to the specific conditions underlying adaptive substitution, yet the quantitative relationship between dominance and K(A)/K(x) is quite flexible and context dependent. This flexibility may partially account for the puzzlingly variable X versus autosome substitution patterns reported in the empirical evolutionary genomics literature. The new theory unites the previously separate analysis of adaptation using new mutations versus standing genetic variation and makes several useful predictions about the interaction between genetic architecture, evolutionary genetic constraints, and effective population size in determining the ratio of adaptive substitution between autosomal and X-linked genes.  相似文献   

20.
When facing the challenge of developing an individual that best fits its environment, nature demonstrates an interesting combination of two fundamentally different adaptive mechanisms: genetic evolution and phenotypic plasticity. Following numerous computational models, it has become the accepted wisdom that lifetime acclimation (e.g. via learning) smooths the fitness landscape and consequently accelerates evolution. However, analytical studies, focusing on the effect of phenotypic plasticity on evolution in simple unimodal landscapes, have often found that learning hinders the evolutionary process rather than accelerating it. Here, we provide a general framework for studying the effect of plasticity on evolution in multipeaked landscapes and introduce a rigorous mathematical analysis of these dynamics. We show that the convergence rate of the evolutionary process in a given arbitrary one-dimensional fitness landscape is dominated by the largest descent (drawdown) in the landscape and provide numerical evidence to support an analogous dominance also in multidimensional landscapes. We consider several schemes of phenotypic plasticity and examine their effect on the landscape drawdown, identifying the conditions under which phenotypic plasticity is advantageous. The lack of such a drawdown in unimodal landscapes vs. its dominance in multipeaked landscapes accounts for the seemingly contradictory findings of previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号