首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

2.
根表铁锰氧化物胶膜对不同品种水稻吸镉的影响   总被引:29,自引:1,他引:29  
采用土培方法,研究了不同品种水稻吸镉的差异及其与根表铁锰氧化物胶膜的关系,结果表明:不同品种水稻其根膜,根部及地上部含镉量均存在显著性差异,且镉在不同水稻植株体内运输转移能力不同,不同水稻其根表淀积的铁锰氧化物数量也存在显著性差异,根膜及地上部的含镉量与极膜的含铁量均未达到显著性相关,但与根膜的含锰量相关性显著。  相似文献   

3.
The concentrations of 18 trace elements (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr, V, and Zn) were measured in two varieties of the epiphytic lichen Pseudevernia furfuracea in order to compare their bioaccumulation capacity. Var. ceratea and var. furfuracea have identical morphology, substrate requirements and ecophysiology, but produce different secondary metabolites (lichen substances). Lichen substances may influence the processes of bioaccumulation of trace elements. We tested the hypothesis that the different metabolic chemical composition of the two varieties may influence the elements uptake. Lichen thalli were collected in a remote area of north-west Italy and transplanted, for one month in two seasons, to the urban-industrial area of Genoa (NW Italy). Lichen material was analysed by means of ICP-AES and bioaccumulation data were interpreted in terms of EC ratio (the ratio of each element after the exposure and, in control samples, prior to exposure). There were significant differences between the two varieties, which could be possibly related to their chemistry: var. ceratea has a higher accumulation capacity for all elements, except for Ca and Cu (which were lower in var. ceratea transplanted in Summer). Particularly, 10 out of 18 elements (Al, Cd, Co, Cr, Fe, Mg, Ni, Sr, and V) showed ‘severe accumulation’ in var. ceratea in both seasons. Thus, in order to enhance data quality in biomonitoring studies, it is suggested to avoid the joint use of the two varieties.  相似文献   

4.
Levels, distribution and chemical forms of trace elements in food plants   总被引:2,自引:0,他引:2  
The content of trace elements in plants can vary widely, depending upon the composition of the soil in which they grow, other environmental factors, and the species or cultivar of the plant. A high growth rate of the plant may cause internal 'dilution' of trace elements. Complex formation with soil organic colloids and compounds, cell wall material and ligands in and inside the cell membranes are of critical importance in uptake, though most evidence shows that it is the free metal ion in the external solution that is absorbed; the detailed mechanisms are still unknown. Other processes such as excretion of organic compounds, reductants and hydrogen ions from the root greatly alter availability of trace metals, and iron has to be reduced to the ferrous form before uptake. The mean composition of plant shoots is affected by age and season; element mobility in the xylem and phloem determines translocation, and hence concentrations in individual parts of the plant. The rate of retranslocation can be strongly affected by the abundance of the element. Symptoms of deficiency or excess are well documented, but are often not dependable. The essentiality of the trace metals depends upon their function as part of enzymes, and these are briefly reviewed, with stress on processes in plants. Only a small fraction of the total amount of an element is bound in the enzyme; of the remainder, some is present as the free metal ion (Mn) or as complexes of small molecular mass (Cu, Zn, Ni, Fe), the rest being bound to cell wall material. Certain species or genotypes have resistance against high levels of some elements in the soil. Several mechanisms may be involved, one being very strong binding to root cell walls. There are also large genetic differences in susceptibility to trace element deficiencies.  相似文献   

5.
A monthly survey of dissolved concentrations of various trace elements was performed in Lake Biwa. Particulate concentrations of the elements were also measured in early autumn and winter. Based on these results, the geochemical behaviors of trace elements are discussed. The redox-sensitive elements Mn and Fe showed characteristic vertical distribution profiles. Profiles of Mn changed drastically with the progression of the stagnation period. The dynamics of Ba were affected by the redox cycle of Mn. Dissolved V concentration showed a clear seasonal variation. In contrast, dissolved concentrations of Sr, Mo, Cu, Zn, and Ni were almost uniform, i.e., not dependent on the season or the depth. The distribution ratios of these elements between lake water and Mn nodules formed in the lake were calculated to assess their geochemical behaviors.  相似文献   

6.
Two successive hydroponic experiments were carried out to identify barley varieties tolerant to Cd toxicity via examining Soil–Plant Analyses Development (SPAD) value, plant height, leaves and tillers per plant, root number and volume, and biomass accumulation. The results showed that SPAD values (chlorophyll meter readings), plant height, leaf number, root number and volume, and biomass accumulation of shoot/root were significantly reduced in the plants grown in 20 μM Cd nutrient solution compared with control, and the uptake and translocation of Zn, Mn, and Cu was also strictly hindered. Furthermore, there was a highly significant difference in the reduction in these growth parameters among varieties, and varieties “Weisuobuzhi” and “Jipi 1” showed the least reduction both in the two experiments, suggesting their high tolerance to Cd toxicity, while “Dong 17” and “Suyinmai 2” with the greatest reduction and the toxicity symptoms appeared rapidly and severely, denoting as Cd-sensitive varieties. Significant variety difference in Cd concentration was also found, with Weisuobuzhi containing the highest and Jipi 1 the lowest Cd concentration in shoots.  相似文献   

7.
A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition partly counteracted the positive effects of N addition on available trace element concentrations in the soil. Foliar Mn, Cu and Zn concentrations increased but Fe concentration decreased with N addition, resulting in foliar elemental imbalances among Fe and other selected trace elements. Water addition alleviated the effect of N addition. Forbs are more likely to suffer from Mn toxicity and Fe deficiency than grass species, indicating more sensitivity to changing elemental bioavailability in soil. Our results suggested that soil acidification due to N deposition may accelerate trace element cycling and lead to elemental imbalance in soil–plant systems of semi-arid grasslands and these impacts of N deposition on semi-arid grasslands were affected by water addition. These findings indicate an important role for soil trace elements in maintaining ecosystem functions associated with atmospheric N deposition and changing precipitation regimes in the future.  相似文献   

8.

Background and aims

Wetland plants have been widely used in constructed wetlands for the clean-up of metal-contaminated waters. This study investigated the relationship between rate of radial oxygen loss (ROL), root porosity, Zn uptake and tolerance, Fe plaque formation in wetland plants.

Methods

A hydroponic experiment and a pot trial with Zn-contaminated soil were conducted to apply different Zn level treatments to various emergent wetland plants.

Results

Significant differences were found between plants in their root porosities, rates of ROL, Zn uptake and Zn tolerance indices in the hydroponic experiment, and concentrations of Fe and Mn on roots and in the rhizosphere in the pot trial. There were significant positive correlations between root porosities, ROL rates, Zn tolerance, Zn, Fe and Mn concentrations on roots and in the rhizosphere. Wetland plants with higher root porosities and ROL tended to have more Fe plaque, higher Zn concentrations on roots and in their rhizospheres, and were more tolerant of Zn toxicity.

Conclusions

Our results suggest that ROL and root porosity play very important roles in Fe plaque formation, Zn uptake and tolerance, and are useful criteria for selecting wetland plants for the phytoremediation of Zn-contaminated waters and soils/sediments.  相似文献   

9.
不同利用强度下绿洲农田土壤微量元素有效含量特征   总被引:13,自引:0,他引:13  
以地处极端干旱背景下的塔里木盆地南缘策勒绿洲为研究区,以绿洲化为视角,根据当地农民耕作习惯于2005年选择4块试验农田,分别代表当地典型的农田利用强度。基于单项指数(Ei)和综合指数(Ec)相结合的评价方法,分析了绿洲农田在不同利用强度下的土壤Fe、Cu、Mn、Zn等微量元素有效性,探讨了土壤微量元素与人为耕作管理措施之间的关系。结果表明:人为耕作管理强度会对土壤微量元素有效含量产生重要影响,绿洲不同位置农田因施肥强度和管理方式的差别,其土壤微量元素有效含量特征存在显著差异。绿洲内部农田土壤有效Fe、Cu、Mn、Zn含量显著高于绿洲边缘各样地,新垦农田土壤有效Fe、Cu、Zn含量均低于对照样地;绿洲内部农田土壤微量元素有效性最高,新垦农田最低;农田土壤微量元素有效性与土壤有机质存在显著的正相关关系。  相似文献   

10.
微波消解ICP-AES法测定糙苏不同部位中的微量元素   总被引:3,自引:1,他引:2  
利用微波消解电感耦合等离子发射光谱(ICP-AES)法测定野生中药糙苏根、茎、叶、花和籽中钠、钾、钙、铁、锌、镁、锰、铜、镍、钼、铅和镉的含量,并进行了分析比较。糙苏不同用药部位的微量元素含量存在差异,其中钠、钾、钙、铁、镁在根、茎、叶、花和籽中的含量均较高,锌、锰、铜、镍、钼的含量较少,铅和镉只在根和茎中痕量存在,结果表明糙苏中含有大量人体必需的微量元素,可为进一步探讨糙苏中元素含量与其药效的相关性提供科学的理论依据。  相似文献   

11.
Concentrations of As, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, V, and Zn were determined in human whole milk samples from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire; in most of these countries, three groups of subjects representing different socioeconomic conditions were studied. Analytical quality control was a primary consideration throughout. The analytical techniques used were atomic absorption spectrophotometry, atomic emission spectrometry with an inductively coupled plasma, colorimetry, electrochemistry, using an ion-selective electrode and neutron activation analysis. The differences between median concentrations of Ca, Cl, Mg, K, Na, and P (minor elements) were lower than 20% among the six countries. Among trace elements, concentrations observed in Filipino milk for As, Cd, Co, Cr, Cu, F, Fe, Mn, Mo, Ni, Pb, Sb, Se, and V were higher than for milk samples from other countries. The remaining five countries showed a mixed picture of high and low values. In the case of at least some elements, such as, F, I, Hg, Mn, Pb, and Se, the environment appears to play a major role in determining their concentrations in human milk. The nutritional status of the mother, as reflected by her socioeconomic status, does not appear to influence significantly the breast milk concentrations of minor and trace elements. Significant differences exist between the actual daily intakes observed in this study and current dietary recommendations made by, for example, WHO and the US National Academy of Sciences. These differences are particularly large (an order of magnitude or more!) for Cr, F, Fe, Mn, and Mo; for other elements, such as, Ca, Cu, Mg, P, and Zn, they amount to at least a factor 2. In the opinion of the present authors, these findings point to the need for a possible reassessment of the dietary requirements of young infants with respect to minor and trace elements, particularly for the elements Ca, Cr, Cu, F, Fe, Mg, Mn, Mo, P, and Zn.  相似文献   

12.
H Zhao  L Wu  T Chai  Y Zhang  J Tan  S Ma 《Journal of plant physiology》2012,169(13):1243-1252
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn.  相似文献   

13.
The storage and flux of various mineral and trace elements in soils (0–30cm depth) were examined in relation to monsoonal rains and fine root biomass in four mangrove forests of different age and type in southern Thailand. The onset of the wet SW monsoon resulted in the percolation and dilution of porewater solutes by rainwater and by less saline tidal water, as indicated by shifts in Eh, pH and porewater SO4/Cl ratios. This is contrary to temperate intertidal environments where seasonal patterns of porewater constituents, and biological and biogeochemical activities, are strongly cued to temperature. Fluxes across the soil–water interface were most often not statistically significant. Concentration of dissolved porewater metals were dominated by Fe, Mn, Al, Mo and Zn. The decreasing order of solid-phase element inventories in these soils, on average, was: Al, S, Fe, Na, Mg, K, Ca, N, P, Mn, V, Zn, Cr, Ni, As, Co, Cu, Pb, Mo, Cd and Hg. There were no gradients in concentrations of dissolved or solid-phase elements with increasing soil depth. This phenomenon was attributed to physical and biological processes, including the presence and activities of roots and tidal recharge of soil water. Fine dead roots were storage sites for most mineral and trace elements, as some elements in roots composed a significant fraction (5%) of the total soil pool. Analysis of S and Fe concentration differences between live and dead roots suggested extensive formation of pyrite associated with dead roots; correlation analysis suggested that trace metals coprecipitated with pyrite. An analysis of inventories and release/uptake rates indicate turnover of the N, P, Na and Ca soil pools equivalent to other tropical forests; turnover was slow (decades to centuries) for S, Fe, K and trace elements. Our results indicate that mineral and trace element cycling in these soils are characterized by net storage, with net accumulation of most elements much greater than uptake and release by tree roots.  相似文献   

14.
Element and extractant-specific desorption of Mn, Fe, Cu, and Zn fromSpartina alterniflora detritus was observed. Desorption of a substantial fraction of the total detrital Mn, Fe, Cu and Zn occured rapidly when the detritus was treated with 0.1N HCl or 1 MgCl2. This treatment removed precipitated/coprecipitated and adsorbed trace elements, respectively, suggesting that a large fraction of detritus-bound trace elements are in readily exchangeable, surface reaction sites. The carboxylic acid functional group cation exchange capacity of the detritus also suggests an important role of surface exchange reactions in the dynamics of trace elements during decomposition. The rate and magnitude of changes in the trace element content of detritus has important implications for estuarine biogeochemical cycling of these elements including the potential for biological uptake of trace elements by detritus-consuming fauna.This research was supported by a cooperative agreement between the National Marine Fisheries Service and the US Department of Energy. The opinions or assertions contained herein are the private views of the authors and are not to be construed or reflecting the views of the Department of the Army or the Department of Defense. Special thanks to Dr. W. L. Johnson who provided the proximate analyses, Southeast Fisheries Center Contribution No. 82-10B.  相似文献   

15.
Zhang  F.  Shen  J.  Li  L.  Liu  X. 《Plant and Soil》2004,260(1-2):89-99
Rhizosphere processes of individual plants have been widely investigated since 1904 when the term “rhizosphere” was first put forward. However, little attention has been paid to rhizosphere effects at an agro-ecosystem level. This paper presents recent research on the rhizosphere processes in relation to plant nutrition in main cropping systems in China. In the peanut (Arachis hypogaea L.)/maize (Zea mays L.) intercropping system, maize was found to improve the Fe nutrition of peanut through influencing its rhizosphere processes, suggesting an important role of phytosiderophores released from Fe-deficient maize. Intercropping between maize and faba bean (Vicia faba L.) was found to improve nitrogen and phosphorus uptake in the two crops compared with corresponding sole crop. There was a higher land equivalent ratio (LER) in the intercropping system of maize and faba bean than the treatment of no root interactions between the two crops. The increased yield of maize intercropped with faba bean resulted from an interspecific facilitation in nutrient uptake, depending on interspecific root interactions of the two crops. In the rotation system of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) crops, Mn deficiency in wheat was caused by excessive Mn uptake by rice and Mn leaching from topsoil to subsoil due to periodic cycles of flooding and drying. However, wheat genotypes tolerant to Mn deficiency tended to distribute more roots to deeper soil layer and thus expand their rhizosphere zones in the Mn-deficient soils and utilize Mn from the subsoil. Deep ploughing also helped root penetration into subsoil and was propitious to correcting Mn deficiency in wheat rotated with rice. In comparison, oilseed rape (Brassica napus L.) took up more Mn than wheat through mobilizing sparingly soluble soil Mn due to acidification and reduction processes in the rhizosphere. Thus, oilseed rape was tolerant to the Mn-deficient conditions in the rice-oilseed rape rotation. Oxidation reactions on root surface of rice also resulted in the formation of Fe plaque in the rice rhizosphere. Large amounts of Zn were accumulated on the Fe plaque. Zinc uptake by rice plants increased as Fe plaque formed, but decreased at high amounts of Fe plaque. It is suggested that to fine-tune cropping patterns and optimize nutrient management based on a better understanding of rhizosphere processes at an agro-ecosystem level is crucial for increasing nutrient use efficiency and developing sustainable agriculture in China.  相似文献   

16.
The radioactive multitracer technique was applied to the simultaneous determination of the uptake of 17 trace elements (Be, Na, Sc, V, Cr, Mn, Fe, Co, Zn, As, Se, Rb, Sr, Y, Zr, Nb, and Ru) in the liver, kidney, and blood of hypercholesterolemic model mice. The uptakes of Be, Sc, V, Cr, Fe, As, Rb, Y, Zr, Nb, and Ru in liver increased with an increasing feeding period of a cholesterol-rich diet, whereas the uptakes of Zn and Se decreased. Feeding of the diet resulted in a marked increase in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. The metabolism of trace elements between cholesterolemic and normal mice was compared with respect to their serum cholesterol levels. A significant positive correlation was found between the concentration of serum triglycerides and liver uptakes of Cr, Fe, and As and a negative correlation for the uptake of Zn. A significant positive correlation was found between the concentrations of serum high- and low-density lipoprotein cholesterols and kidney uptakes of Cr and Rb. A negative correlation was found between the uptake of Be in the blood and the concentration of serum triglycerides. These results suggest that cholesterolemia have some specific effects on the metabolism of some elements.  相似文献   

17.
18.
Kinetics of zinc uptake by two rice cultivars   总被引:4,自引:0,他引:4  
Summary Rice (Oryzae sativa L.) cultivars differ widely in their susceptibility to zinc (Zn) dificiency. Excised root apices of cv IR26 actively absorbed Zn at a rate twice that of cv M101 roots. This difference in Zn uptake rates could not be attributed to greater root surface area in cv IR26 as compared to cv M101. The maximum rates of Zn uptake (Vmax) and the Km values also differed markedly between these two cultivars. Roots of cv M101 have a two-fold greater affinity for Zn than do those of cv IR26. Leaf blade tissues of IR26 and M101 rice absorbed Zn at similar rates. Rice cv IR26 readily develops Zn deficiency symptoms in hydroponic culture but cv M101 rarely does so.  相似文献   

19.
Interaction of elements in the course of element uptake by carrot (Daucas carota cv. U.S. harumakigosun) exerted by the addition of elements, such as Rb, Zn, and Al, was investigated. For the purpose of precise evaluation of uptake behavior, the simultaneous determination of absorption of Na, Be, Sr, Mn, Co, Zn, Ce, Pm, and Gd was conducted by the multitracer technique. For root uptakes, Al exhibited its influence on the uptake of essential elements and on the uptake of toxic or unbeneficial ones, presumably as a result of the large electric valency that caused cell membrane disintegrity. On the other hand, Zn as a divalent cation only affected the uptake of essential and beneficial elements. Rubidium, which is a monovalent cation, did not exhibit any effect on the uptake of other ions. Concerning shoot uptakes, inhibition by Zn and Al, but not by Rb, was observed for the uptake of Sr, Mn, Co, and Zn. From the present investigation, it is suggested that there exists an interaction between added ions and the elements taken into plants and that the degree of interaction increases in the increasing order of ionic valency: M+ (Rb), M2+ (Zn), and M3+ (Al).  相似文献   

20.
三江平原泥炭中营养元素垂直分布特征   总被引:7,自引:2,他引:7  
采用冬季采样、现场分层的方法,系统地研究了三江平原河床.河漫滩型泥炭地和谷底洼地型泥炭地中常量营养元素N、P、Mg、Ca、Fe和微量营养元素Cu、Zn、Mn、B的垂直分布特征.结果表明,总N在泥炭表层富集,总P在草根层富集,其含量随剖面深度的增加而降低,Zn、Mn、B、Mg、Fe表现出草根层富集和淤泥质亚粘土潜育层急剧积累,Ca元素含量在剖面各层次中分布较均匀.某些营养元素间具有显著的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号