首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N R Burns  W B Gratzer 《Biochemistry》1985,24(12):3070-3074
The binding of calmodulin to red cell membrane cytoskeletons and to purified spectrin from red cells and bovine brain spectrin (fodrin) has been examined. Under physiological solvent conditions binding can be measured by ultracentrifugal pelleting assays. The membrane cytoskeletons contained a single class of binding sites, with a concentration similar to that of spectrin dimers and an association constant of 1.5 X 10(5) M-1. Binding is calcium dependent and is suppressed by the calmodulin inhibitor trifluoperazine. The binding showed a marked dependence on ionic strength, with a maximum at 0.05 M, and a steep dependence on pH, with a maximum at pH 6.5. It was unaffected by 5 mM magnesium. An azidocalmodulin derivative, under the conditions of our experiments, did not label the spectrin-containing complex, although it could be used to demonstrate binding to fodrin. Binding of calmodulin to spectrin tetramers and fodrin in solution could be demonstrated by a pelleting assay after addition of F-actin. Calculations (which are necessarily rough) suggest that at the free calcium concentration prevailing in a normal red cell about 1 in 20 of the calmodulin binding sites in spectrin will be occupied; this proportion will rise rapidly with increasing intracellular calcium. To determine whether inhibition of calmodulin binding to red cell proteins disturbs the control of cell shape, as has been suggested, calcium ions were removed from the cell by addition of an ionophore and of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to the external medium. This did not affect the discoid shape. Trifluoperazine still induced stomatocytosis, exactly as in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Role of the bilayer in the shape of the isolated erythrocyte membrane   总被引:1,自引:0,他引:1  
Summary The determinants of cell shape were explored in a study of the crenation (spiculation) of the isolated erythrocyte membrane. Standard ghosts prepared in 5mm NaPi (pH 8) were plump, dimpled disks even when prepared from echinocytic (spiculated) red cells. These ghosts became crenated in the presence of isotonic saline, millimolar levels of divalent cations, 1mm 2,4-dinitrophenol or 0.1mm lysolecithin. Crenation was suppressed in ghosts generated under conditions of minimal osmotic stress, in ghosts from red cells partially depleted of cholesterol, and, paradoxically, in ghosts from red cells crenated by lysolecithin. The susceptibility of ghosts to crenation was lost with time; this process was potentiated by elevated temperature, low ionic strength, and traces of detergents or chlorpromazine.In that ghost shape was influenced by a variety of amphipaths, our results favor the premise that the bilayer and not the subjacent protein reticulum drives ghost crenation. The data also suggest that vigorous osmotic hemolysis induces a redistribution of lipids between the two leaflets of the bilayer which affects membrane contour through a bilayer couple mechanism. Subsequent relaxation of that metastable distribution could account for the observed loss of crenatability.  相似文献   

3.
Summary Two of the commonly used probes for measuring membrane potential—lipophilic cations and the cyanine dye diS-C3(5)—indicated nominally opposite results when tetraphenylarsonium ion was added as a drug to suspensions of metabolizingBacillus subtilis cells. [3H]-Triphenylmethylphosphonium uptake was enhanced by the addition, indicating hyperpolarization, yet fluorescence of diS-C3(5) was also enhanced, indicating depolarization. Evidence is presented that both effects are artifactual, and can occur without any change in membrane potential, as estimated by86Rb+ uptake in the presence of valinomycin. The fluorescence studies suggest that tetraphenylarsonium ion displaces the cyanine dye from the cell envelope, or other binding site, into the aqueous phase.The uptake characteristics of the radiolabeled lipophilic cations were quite unusual: At low concentrations (e.g., less than 10 m for triphenylmethylphosphonium) there was potential-dependent uptake of the label to a stable level, but subsequent addition of nonradioactive lipophilic cation caused further uptake of label to a new stable level. Labeled triphenylmethylphosphonium ion taken up to the first stable level could be displaced by 10mm magnesium ion, whereas86Rb+ uptake was unperturbed. Association of the lipophilic cations with the surface of de-energized cells was concentration-dependent, but there was no evidence for cooperative binding. This phenomenon of stimulated uptake inB. subtilis (which was not seen inEscherichia coli cells or vesicles) is consistent with a two-compartment model with access to the second compartment only being possible above a critical cation concentration. We tentatively propose such a model, in which these compartments are the cell surface and the cytoplasm, respectively.Triphenylmethylphosphonium up to 0.5mm exhibited linear binding to de-energized cells; binding of tetraphenylphosphonium and tetraphenylarsonium was nonlinear but was not saturated at the highest concentration tested (1mm). The usual assumption, that association of the cation with cell surfaces is saturated and so can be estimated on de-energized cells, therefore leads to undercorrected estimates of cytoplasmic uptake inB. subtilis, and hence to overestimates of membrane potential. We describe a more realistic procedure, in which the estimate of extent of binding is based on a mean aqueous concentration related both to the external concentration and to the much higher internal concentration that exists in energized cells. Using this procedure we estimate the membrane potential inB. subtilis to be 120 mV, inside-negative. The procedure is of general applicability, and should yield more accurate estimates of membrane potential in any system where there is significant potential-dependent binding.Work performed while on sabbatical leave from Department of Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.  相似文献   

4.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

5.
It has been proposed that the spectrin-actin submembrane network participates in control of red cell shape and deformability. We have examined ATP- and calcium-dependent changes in organization of spectrin in the membrane employing cross-linking of the nearest membrane protein neighbors by spontaneous or catalyzed (CuSO4, O-phenanthroline) intermolecular disulfide couplings and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cross-linking of fresh red cells resulted in the formation of spectrin and actin dimers and tetramers. ATP-depleted red cells differed from fresh cells in the presence of an additional reducible polymer of MW > 1 × 106 selectively enriched in spectrin. This polymer formed spontaneously when red cells were depleted of ATP under aerobic conditions. After anaerobic ATP depletion, the polymer formed in ghosts after cross-linking by catalytic oxidation. Polymerization was prevented by maintenance of ATP and coincided with an ATP-dependent discocyte-echinocyte transformation. This suggests that, in ATP-depleted red cells, spectrin is rearranged to establish closer contacts, and that this may contribute to the discocyte-echinocyte transformation. The introduction of greater than 0.5 mM Ca++ into ghosts by inclusion in hemolysis buffer or into fresh red cells (but not ATP-depleted red cells) by treatment with ionophore A23187 spontaneously produced a nonreducible polymer which others have attributed to transamidative cross-linking of spectrin, band 3, and other proteins. Spontaneous formation of both polymer types (reducible in aerobically ATP-depleted red cells and nonreducible in fresh, Ca++ enriched red cells) resulted in stabilization (“autocatalytic fixation”) of spheroechinocytic shape. Irreversibly sickled cells, which have increased calcium and decreased ATP, and exhibit a permanent membrane deformation, failed to form any of the above polymers. This suggests that in contrast to normal cells depleted of ATP in vitro, fixation of ISC shape in vivo is not related to Ca- and ATP-dependent membrane protein polymerization. However, ISCs had an increased propensity to form the reducible, spectrin-rich polymer during a subsequent metabolic depletion in vitro. This was associated with transformation of ISCs into spheroechinocytes. Similar echinocytic ISCs were found to constitute 5–10% of the densest fractions of freshly separated ISCs. ISCs then exhibit sphero-echniocyte transformation, both in vitro and in vivo. We propose that this is due to spectrin reorganization that presumably results from the progressively increasing calcium and decreasing ATP of ISCs. These data provide evidence of altered spectrin organization in membranes of ATP-depleted, calcium-enriched red cells in vitro and in vivo.  相似文献   

6.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

7.
Summary The concentration dependence and the pH dependence of the phosphate transport across the red cell membrane were investigated. The unidirectional phosphate fluxes were determined by measuring the32P-phosphate self-exchange in amphotericin B (5 mol/liter) treated erythrocytes at 25°C.The flux/concentration curves display anS-shaped increase at low phosphate concentrations, a concentration optimum in the range of 150 to 200mm phosphate and a self-inhibition at high phosphate concentrations. The apparent half-saturation concentrations,P (0.5), range from 50 to 70mm and are little affected by pH. The self-inhibition constants, as far as they can be estimated, range from 400 to 600mm. The observed maximal phosphate fluxes exhibit a strong pH dependence. At pH 7.2, the actual maximal flux is 2.1×10–6 moles·min–1·g cells–1. The ascending branches of the flux/concentration curves were fitted to the Hill equation. The apparent Hill coefficients were always in the range of 1.5–2.0. The descending branches of the flux/concentration curves appear to follow the same pattern of concentration response.The flux/pH curves were bell-shaped and symmetric with regard to their pH dependence. The pH optimum is at approximately pH 6.5–6.7. The apparent pK of the activator site is in the range of 7.0 to 7.2, while the apparent pK for the inactivating site is in the range of 6.2 to 6.5. The pK-values were not appreciably affected by the phosphate concentration.According to our studies, the transport system possesses two transport sites and probably two modifier sites as indicated by the apparent Hill coefficients. In addition, the transport system has two proton binding sites, one with a higher pK that activates and one with a lower pK that inactivates the transport system. Since our experiments were executed under self-exchange conditions, they do not provide any information concerning the location of these sites at the membrane surfaces.  相似文献   

8.
Summary In human red cells homozygous for hemoglobin C (CC), cell swelling and acid pH increase K efflux and net K loss in the presence of ouabain (0.1mm) and bumetanide. We report herein, that K influx is also dependent on cell volume in CC cells: cell swelling induces a marked increase in the maximal rate (from 6 to 18 mmol/liter cell × hr) and in the affinity for external K (from 77±16mm to 28±3mm) of K influx. When the external K concentration is varied from 0 to 140mm, K efflux from CC and normal control cells is unaffected. Thus, K/K exchange is not a major component of this K movement. K transport through the pathway of CC cells is dependent on the presence of chloride or bromide; substitution with nitrate, acetate or thiocyanate inhibits the volume- and pH-dependent K efflux. When CC cells are separated according to density, a sizable volume-dependent component of K efflux can be identified in all the fractions and is the most active in the least dense fraction. N-ethylmaleimide (NEM) markedly stimulates K efflux from CC cells in chloride but not in nitrate media, and this effect is present in all the fractions of CC cells separated according to density. The persistence of this transport system in denser CC cells suggests that not only cell age, but also the presence of the positively charged C hemoglobin is an important determinant of the activity of this system. These data also indicate that the K transport pathway of CC cells is not an electrodiffusional process and is coupled to chloride.  相似文献   

9.
At neutral pH spectrin induces modest leakage of trapped calcein from reverse-phase or extruded, but not sonicated, vesicles composed of phosphatidylserine, but not phosphatidylcholine. The extent of leakage from extruded vesicles is not or is only slightly affected by magnesium ions at a physiological concentration or calcium ions at a greater than physiological concentration, respectively. In addition to accounting for several previously discrepant observations on the lytic effects of spectrin, these findings indicate that some proteins like spectrin may destabilize vesicles with low curvature more readily than vesicles of high curvature, in contrast to certain amphiphilic peptides. 60% less leakage is induced from phosphatidylserine vesicles by heat-denatured than by native spectrin. In contrast, both trypsin- and subtilisin-treated spectrins, if sufficiently digested, induce several-fold more leakage than undigested spectrin. Since spectrin prepared either by 1 M Tris dissociation of Triton-extracted cytoskeletons or by low ionic strength extraction of ghosts released the same amounts of calcein from vesicles of various compositions, these effects are unlikely to reflect artifacts of spectrin preparation. Furthermore, spectrin is unlikely to promote leakage in vivo, since vesicles composed of phosphatidylserine, cholesterol and/or phosphatidylethanolamine, which constitute the lipid composition of the inner monolayer of the red cell membrane, did not leak on addition of spectrin, whereas vesicles composed of phosphatidylserine and phosphatidylcholine, did leak in the presence of spectrin.  相似文献   

10.
Specific antibodies to human glycophorin A and spectrin were used to study the expression of these membrane proteins in normal and pathologic human bone marrow. In immunofluorescence experiments spectrin and glycophorin A are found in 50–60% of the nucleated cells in normal bone marrow. These two proteins are expressed at all stages of red cell differentiation and can be traced at least to the earliest morphologically recognizable nucleated red cell precursor, the proerythroblast; the two proteins are specific for cells of the red cell series and are not found to be expressed in lymphocytic, granulocytic cells or platelets. These conclusions were drawn from studies on bone marrow in patients with a temporary block in erythropoiesis at the level of stem cells or of the pronormoblast. Bone marrow from these individuals either lacked all nucleated cells stainable for glycophorin A and spectrin or contained only pronormoblasts. Similar findings were obtained on spleen cells from mice which were made severely anemic by multiple injections with N-acetyl-phenylhydrazine. Antibodies to a sialoglycoprotein isolated from mouse red cell membranes stain 70–80% of all cells in the spleen of anemic animals, while only 1–2% of such cells are seen in the spleen of normal animals. Spectrin and glycophorin A could be labeled metabolically and isolated using specific antibodies. The human tumor cell line K562 expresses both membrane proteins, but induction experiments with various agents thus far have failed to change their expression.  相似文献   

11.
Summary A brief review of the data relating the glucose transport system and other membrane functions of red cells to surface sulfhydryl groups is presented. The effect of a variety of sulfhydryl reagents on glucose efflux rates from loaded red cells was studied. Neither iodoacetate nor iodoacetamide at 5mm inhibited efflux. Several maleimide derivatives and disulfides inhibited efflux in 0.7 to 2.0mm concentrations. Organomercury compounds, on the other hand, were active in the 0.07 to 0.1mm range. These data suggest that, if sulfhydryl groups are important in the glucose efflux process, they are not equally accessible to the above reagents; and that the primary effect of these reagents may be on structural elements near membrane sulfhydryl groups.  相似文献   

12.
Summary Poly-L-lysine concentrations (10–6 m) which cause slight leakage of pigment from beet cells completely disrupt the kinetics of*K (labeled) absorption at 25°C in the range 0.01 to 50mm KCl. Lower concentrations of polylysine (10–7 to 10–9 m) interfere with potassium fluxes at both cell membranes, initially increasing efflux across the plasma membrane and decreasing the capacity of the cytoplasm to retain ions during flux experiments at 2°C. At 25°C, these concentrations of polylysine increase*K (labeled) absorption from 0.2mm KCl, but not from 10mm KCl. These responses are discussed in relation to ion transport via the three-compartment in-series model proposed for plant cells. Particular emphasis is placed on the role of the plasma membrane in K transport from solutions of low concentration.  相似文献   

13.
Summary The inhibition of strontium transport from erythrocyte ghosts by internal calcium was investigated. When active strontium transport was measured in the presence of increasing levels of internal calcium it was found that the inhibition of strontium transport started at an internal calcium level of 0.3mm and was virtually complete when this concentration reached 1.0mm. It was also noted that calcium transport was virtually constant between concentrations of 0.3 and 1.0mm. This experiment indicated that calcium did not inhibit strontium transport by competing for the active site of the transport system. This inhibition was partially reversed by increasing the internal magnesium concentration from 1 to 4mm. A higher level of magnesium at the time of lysis and during incubation enhanced strontium transport. However, the inhibition remained noncompetitive with respect to calcium. Manganese was also found to support calcium and strontium transport. However, it could not reverse the inhibition of strontium transport by internal calcium at any concentration tested. In fact, manganese restored the inhibition of strontium transport by calcium in ghosts that were prepared and incubated in solutions that had high magnesium levels.  相似文献   

14.
In this study the influence of whole-body hyperthermia on the distribution of spectrin in murine lymphocytes isolated from various lymphoid tissues is examined. Lymphocytes normally vary in terms of the pattern of spectrin distribution within the cell. In certain populations of lymphocytes, spectrin is distributed into a dense submembranous aggregate that can be easily identified by immunofluorescence microscopy. In these lymphocytes, little or no spectrin is seen at the plasma membrane region in the rest of the cell. Other lymphocytes have no such cytoplasmic aggregates, and the protein is seen at the region of the plasma membrane. Following whole-body hyperthermia (40.5 degrees C for 90 min) there is a 100% increase in cells exhibiting polar spectrin aggregates in the spleen, while lymphocytes from the thymus show no alteration in the number of cells showing such aggregates. The increase in the percentage of splenic cells that express aggregated spectrin is a result of increases occurring in both T- and B-cell subsets. This increase gradually returns to control levels by 48 h post-heating. During recovery to control levels this phenomenon is resistant to additional changes when a second heat treatment is applied. The effects described above are not observed when the experiments are performed in vitro; therefore, it is likely that the in vivo heat-induced alteration in the splenic lymphocyte population reflects the physiological response of lymphocytes to stimuli during a natural fever. The role that spectrin may play in the modulation of lymphocyte membrane properties is discussed.  相似文献   

15.
Spectrin in isolated erythrocyte membranes is known to undergo tetramer to dimer transformation upon hypotonic incubation at 37 degrees C. In the present study, we detect no such transformation in intact erythrocytes in which hypotonicity is achieved by valinomycin treatment followed by hypotonic swelling. The inhibition of spectrin tetramer to dimer transformation is attributable to intracellular hemoglobin, since the addition of hemoglobin to isolated membranes or spectrin extracts blocks a similar spectrin transformation. However, the inhibitory effect is not limited to hemoglobin; other proteins including heme-containing proteins and basic proteins such as cytochrome c, ribonuclease, and albumin are also effective. The magnitude of their effect is proportional to the increased pI value of these proteins. We conclude that the stabilizing effect of these proteins on spectrin tetramers under hypotonic conditions is partly due to their non-ideality, which excludes water from spectrin and thus increases the effective concentration of spectrin, and to their electrostatic interactions with spectrin. In addition, promotion of spectrin self-association by hemoglobin under hypotonic conditions increases the stability of membrane skeletons against mechanical shearing. More importantly, the hemoglobin effect on spectrin self-association is demonstrable at physiological hemoglobin concentration, pH, and osmolarity, suggesting that in intact red cells the spectrin dimer-dimer association, as well as the membrane skeletal structure, is strengthened by intracellular hemoglobin.  相似文献   

16.
Summary As 15% of band 3 protein, the assumed chloride channel, is associated with spectrin, the major peripheral protein of a lattice located at the red cell membrane-cytosol interface, the present study was undertaken to evaluate whether a rearrangement of the lattice modifies the functional property of band 3 protein. Such a rearrangement was modulated by depletion of cell ATP and/or by accumulation of Ca2+ ions within the cell.ATP depletion induces an inhibition of the electroneutral one-for-one chloride exchanges. Neither the modification of red cell morphology due to ATP depletion (discocyte-echinocyte transformation) nor a direct effect of the decrease in internal ATP level can account for this inhibition. On the other hand, it seems reasonable to consider that inhibition is related to the changes in membrane protein organization (formation of heteropolymers) induced by the decrease in ATP level. But it does not appear that the degree of inhibition is modified when this altered assembly of membrane protein is stabilized by disulfide linkages.Accumulation of Ca2+ ions in the cell at a relatively low concentration (10m range) inhibits chloride exchange without apparent modification of the assembly of membrane proteins. This effect of calcium on chloride exchanges is speculatively denoted as a direct effect of calcium.Calcium loading of fresh red cells at higher concentrations (500 to 1000 m) obtained by use of the ionophore A23187 induces a very strong inhibition of chloride exchanges. In this case, inhibition can be reasonably accounted for by two simultaneous effects of calcium: a direct effect which explains half of the inhibition and an indirect effect due to the formation of membrane protein complexes stabilized by covalent crosslinkages (activation by Ca2+ ions of a transglutaminase).It is interesting to note that intracellular calcium, whatever the level, inhibits electroneutral exchanges of chloride but increases net chloride movements.  相似文献   

17.
The red cell membrane derives its elasticity and resistance to mechanical stresses from the membrane skeleton, a network composed of spectrin tetramers. These are formed by the head-to-head association of pairs of heterodimers attached at their ends to junctional complexes of several proteins. Here we examine the dynamics of the spectrin dimer-dimer association in the intact membrane. We show that univalent fragments of spectrin, containing the dimer self-association site, will bind to spectrin on the membrane and thereby disrupt the continuity of the protein network. This results in impairment of the mechanical stability of the membrane. When, moreover, the cells are subjected to a continuous low level of shear, even at room temperature, the incorporation of the fragments and the consequent destabilization of the membrane are greatly accentuated. It follows that a modest shearing force, well below that experienced by the red cell in the circulation, is sufficient to sever dimer-dimer links in the network. Our results imply 1) that the membrane accommodates the enormous distortions imposed on it during the passage of the cell through the microvasculature by means of local dissociation of spectrin tetramers to dimers, 2) that the network in situ is in a dynamic state and undergoes a "breathing" action of tetramer dissociation and re-formation.  相似文献   

18.
Summary The effects of diltiazem, a drug which inhibits the calcium channels in cardiac muscle as well as the light-sensitive channels in photoreceptor cells, were studied on ionic fluxes in both membrane and intact cell preparations. Diltiazem nonselectively increased the ionic permeability to both anions and cations in photoreceptor rod outer segment and synaptic membrane vesicles as well as in intact erythrocytes. Under our conditions, the estimated threshold for the diltiazem effect varied between 12.5 and 200 m. In each case the concentration dependence exhibited the sigmoidal shape characteristic of positive cooperativity. The effect of diltiazem on ionic fluxes from phospholipid vesicles were strongly influenced by phospholipid composition and membrane charge. By contrast, diltiazem inhibited the efflux of86Rb from photoreceptor cells of intact aspartate-isolated retina, an effect opposite to that of diltiazem on ionic permeabilities in photoreceptor membrane vesicle preparations.These data raise serious doubts on the specificity of diltiazem as a calcium channel blocker or as a cGMP channel blocker when used at concentrations higher than 10 m.  相似文献   

19.
It is known that human erythrocytes in saline fragment by development of an unstable surface wave on the cell rim when cells are heated through the denaturation temperature of the structural protein, spectrin. Here the influence of tetracaine on the fragmentation process has been recorded and analysed by video microscopy of cells heated in rectangular glass microcapillaries. The number of waves per cell rim decreases with increasing tetracaine concentration until, at 0.5 mM tetracaine, wave growth on the cell rim is suppressed on most cells and the cells internalize membrane at the cell dimple. The rate constant for the change in the number of waves per cell with increasing tetracaine concentration is 9.6 mM?1 at a heating rate of 0.5 K/s. 50% of heated cells internalize membrane at 0.14 mM tetracaine. When cells are heated rapidly in suspension in test tubes the presence of tetracaine reduces the temperature for 50% haemolysis from 66°C for washed control cells to 60.5°C for cells in 2 mM tetracaine. Cells heated in microcapillaries in tetracaine concentrations of 3 mM and higher begin to swell before the spectrin denaturation temperature is reached. Cell fusion was observed at and above the spectrin denaturation temperature in cells heated in 3 and 4 mM tetracaine. It was also noted that the morphology of erythrocytes maintained in 3.6 mM tetracaine for times up to 30 min at 37°C or 20°C was strongly dependent on temperature and time.  相似文献   

20.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号