首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
An aminopeptidase from Aspergillus oryzae 460 was purified from the rivanol precipitable fraction. The partially purified enzyme was not homogeneous in disc electrophoresis, although symmetric profiles were obtained for enzyme protein and activity in Sephadex gel filtration. Its optimum pH is at pH 8.5 for l-leucyl-β-naphthylamide. The enzyme activity was inhibited by metal chelating agents and S-S dissociating agents, but not inhibited by SH reagents. The molecular weight of the enzyme was estimated to be about 26,500 by gel filtration. The enzyme was named leucine aminopeptidase I of Asp. oryzae 460, since it preferentially hydrolyzed oligopeptides that possess leucine as the amino terminal amino acid.  相似文献   

2.
We report the partial purification to apparent homogeneity of a soluble aminopeptidase (EC 3.4.11.1) from midgut of Helicoverpa armigera larvae, which preferentially degraded Leucine p-nitroanilide (LpNA). After midgut isolation, extraction and precipitation of soluble proteins with acetone, proteins were purified in two consecutive steps including gel filtration and ion-exchange chromatographies. Aminopeptidase activity was increased 8.95 fold after gel filtration chromatography. The purified enzyme appeared as single band with a molecular mass of ~ 112 kDa in SDS-PAGE, with a pH optimum of 7.0. Zymogram analysis revealed two enzymatically active proteinases using LpNA as substrate. The optimal temperature of aminopeptidase activity was 50–60 °C. The enzyme was characterized as metalloprotease as it was strongly inhibited by 1,10 phenanthroline. Strong inhibition was also being observed using the specific aminopeptidase inhibitor bestatin. Heavy metal ions, EDTA and cysteine strongly inhibited the enzyme, while Ca+ 2, Mn+ 2 and Mg+ 2 somewhat stimulated aminopeptidase activity. Besides LpNA, the purified aminopeptidase also cleaved with decreasing activity ApNA, VpNA and BApNA. Study could be helpful to understand the mechanism of action of N-terminal degrading enzymes and also important is to further study the differential interaction of Bacillus thuringiensis cry insecticidal toxin with midgut receptor of insects.  相似文献   

3.
Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8 kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.  相似文献   

4.
An enkaphalin-degrading aminopeptidase using Leu-enkephalin as a substrate was purified about 4100-fold from guinea pig serum. The purified preparation was apparently homogenous, showing on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was approx. 92 000. The amino-peptidase had a pH optimum of 7.0 with Km values of 0.12 mM and 0.18 mM for Leu- and Met-enkephalin, respectively. The enzyme hydrolyzed neutral, basic and aromatic amino acid β-naphthylamides, but did not the acidic one. The enzyme was inhibited strongly by metal-chelating agents, bestatin and amastatin and weakly by puromycin. Among several biologically active peptides, angiotensin III and substance P strongly inhibited the enzyme.  相似文献   

5.
Aminopeptidase activity from germinated jojoba cotyledons   总被引:2,自引:1,他引:1       下载免费PDF全文
One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline.

The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg2+ or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-β-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence.

  相似文献   

6.
An aminopeptidase was isolated from a soluble fraction of Alaska pollack roe in the presence of 2-mercaptoethanol by fractionation with ammonium sulfate and column chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The molecular weight of the enzyme was estimated to be 125,000 and 105,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The pH optimum and temperature optimum were 7.2 and 35 degrees C, respectively. The purified enzyme hydrolyzed various alpha-aminoacyl beta-naphthylamides and cleaved L-Ala-beta-naphthylamide most rapidly. Both a sulfhydryl group and a divalent metal ion are essential for activity; however, the enzyme was inhibited when incubated with divalent metal ions. Puromycin, chelating agents, and thiol reagents were effective inhibitors. The enzyme was also inhibited by L-amino acids, in particular glutamic acid. Thus, the Alaska pollack roe aminopeptidase resembles soluble alanyl aminopeptidase [EC 3.4.11.14].  相似文献   

7.
A membrane-bound aminopeptidase which cleaves the tyrosin-glycine bond of enkephalin was purified about 1600-fold from monkey brain. This aminopeptidase hydrolyzed Leu-enkephalin with a Km value of 35 μM and also hydrolyzed basic, neutral and aromatic amino acid β-naphthylamides. An apparently homogeneous enzyme consisted of a single polypeptide chain with a molecular weight of approx. 100 000. The optimum pH was in the neutral region. From the analysis of the reaction products, only aminopeptidase activity was detected. The enzyme was inactivated by metal chelators, but the activity could be restored by the addition of divalent cations, such as Co2+, Mg2+ and Zn2+. Puromycin, bestatin and amastatin, which are aminopeptidase inhibitors derived from microorganism, showed strong competitive inhibition of the enzyme, the most potent being amastatin, with a Ki value of 0.02 μM.  相似文献   

8.
Yeast strain 31-B was isolated from the digestive juices of Nepenthes alata as an aminopeptidase producer and identified as Pseudozyma hubeiensis via morphological testing and comparative 26S ribosomal DNA-D1/D2 gene sequence analysis. Strain 31-B produced aminopeptidase as extracellular peptidase, but proteinase activity was not detected in the culture filtrate. The aminopeptidase from strain 31-B was purified from filtered culture medium by (NH4)2SO4 precipitation and four column chromatography steps: Diethylaminoethyl (DEAE)-Toyopearl 650 M, Butyl-Toyopearl 650 M, hydroxylapatite, and Toyopearl HW-55. Sodium dodecyl sulfate polyacrylamide gel electrophoresis yielded the purified enzyme as a single band with molecular mass 75.3 kDa. The optimum temperature and pH were approximately 40 °C and 8.0, respectively. The purified aminopeptidase preferentially hydrolyzed Leu-p-NA and its activity was inhibited by ethylenediaminetetraacetic acid. The isolated aminopeptidase reduced the bitterness of peptides generated from milk casein using a bacterial proteinase. These results show that the aminopeptidase produced by P. hubeiensis 31-B has potential application as a food additive in the dairy industry.  相似文献   

9.
A putative aminopeptidase P gene (TM0042, Swissport Q9WXP9, GeneBank AAD35136) of Thermotoga maritima was cloned and expressed in Escherichia coli BL21 (RIL). The enzyme was purified by the combination of ion exchange chromatography; Q-Sepharose and Mono-Q column. The purified recombinant T. maritima aminopeptidase P enzyme, gave a homogenous protein band with an apparent molecular weight of 40 kDa in SDS-PAGE analysis. The enzyme was purified 23-fold with the specific activity of 16.5 unit/mg with the final recovery of 22%. The enzyme was thermostable up to 90 °C for 30 min. An optimal activity was observed at 90 °C at pH 7.5. The purified enzyme was stable between pH 6.5 and 8 at 80 °C with the optimum of pH 7.5. Based on the amino acid sequence, the enzyme belongs to M 24B family of metalloenzymes. None of the divalent cations enhance the activity of the enzyme while Pb2+, Cu2+, Co2+, Cd2+, and Zn2+ were inhibitory to the enzyme activity. Divalent cation of Mg2+ showed 100% enzyme activity, to a lesser extent, Ca2+ and Mn2+ whereas strong inhibition of enzyme activity was observed with Zn2+ and Cd2+. The enzyme designated as putative aminopeptidase P was very low activity in hydrolyzing proline-p-nitroanilide. Kinetic studies on the purified enzyme confirmed that the enzyme is a leucine aminopeptidase. Enzyme also hydrolyzes lysine-p-nitroanilide with efficiency comparable to that of leucine-p-nitroanilide. This is the first report of leucine aminopeptidase with lysine-p-nitroanilide hydrolyzing activity, which belongs to the M 24B family of metalloenzymes.  相似文献   

10.
The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys–7-amino-4-methylcoumarin at pH 7 and 37°C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of the pepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.  相似文献   

11.
Tripeptide aminopeptidase (EC 3.4.11.4) was purified from bovine dental follicles by a series of chromatographies. Purified enzyme had a specific activity of 59.5 units per mg protein with L-prolyl-glycylglycine as substrate. The pH optimum was 8.0. The purified native enzyme had a Mr of 230,000 and was shown to be a tetramer of subunit Mr of 58,000. The isoelectric point was pH 7.0. The enzyme was inhibited 5-5-dithio-bis (2-nitrobenzoic acid),o-phenanthroline, and bestatin. Substrate specificity studies indicated that the enzyme specifically hydrolyzes the N-terminal amino acid residue from tripeptides only.  相似文献   

12.
A thermostable aminopeptidase, called aminopeptidase T, from the extract of Thermus aquaticus YT-1 was purified and characterized. The enzyme had a dimeric structure, its relative molecular mass being 108,000 by gel filtration, and 48,000 by SDS-PAGE. The optimum pH of the enzyme activity was in the range of 8.5 to 9.0. The enzyme was significantly thermostable as it still retained 60% of its original activity even after heat treatment for 20 hr at 80°C. The enzyme activity was inhibited by metal-chelating agents. The enzyme had a low substrate specificity.  相似文献   

13.
Purification of a cis-epoxysuccinic acid hydrolase was achieved by ammonium sulfate precipitation, ionic exchange chromatography, hydrophobic interaction chromatography followed by size-exclusion chromatography. The enzyme was purified 177-fold with a yield of 14.4%. The apparent molecular mass of the enzyme was determined to be 33 kDa under denaturing conditions. The optimum pH for enzyme activity was 7.0, and the enzyme exhibited maximum activity at about 45 °C in 50 mM sodium phosphate buffer (pH 7.5). EDTA and o-phenanthrolin inhibited the enzyme activity remarkably, suggesting that the enzyme needs some metal cation to maintain its activity. Results of inductively coupled plasma mass spectrometry analysis indicated that the cis-epoxysuccinic acid hydrolase needs Zn2+ as a cofactor. Eight amino acids sequenced from the N-terminal region of the cis-epoxysuccinic acid hydrolase showed the same sequence as the N-terminal region of the beta subunit of the cis-epoxysuccinic acid hydrolase obtained from Alcaligenes sp.  相似文献   

14.
A saccharifying enzyme was produced by Aspergillus awamori var. kawachi using wastewater generated by a Shochu distillery. The production of the saccharifying enzyme was of the non-growth associated type, and 80 U of activity per ml of broth was obtained in about 6 d of flask cultivation. Since the Shochu distillery wastewater contained high concentrations of volatile fatty acids that were converted to their free forms and severely inhibited cell growth at low pH, the optimum initial pH ranged from 4.5 to 6.0. It is suggested that cell autolysis facilitated the release of the saccharifying enzyme, but a released protease digested the saccharifying enzyme with a subsequent decrease in activity. The saccharifying enzyme was easy to purify, and the purified enzyme was homogeneous when analyzed by disc electrophoresis. The molecular weight was estimated to be 54,000 Da by SDS-PAGE, and the isoelectric point was found to be pH 3.6 by isoelectric focusing. The optimum temperature and pH for the reaction ranged from 50 to 55°C and 4.5 to 5.5, respectively. The saccharifying enzyme could not digest raw starch. The hydrolyzate of soluble starch hydrolyzed by the saccharifying enzyme was composed of two to four oligosaccharides. From these results and the amino acid sequence in the N-terminal, the enzyme produced was concluded to be α-amylase.  相似文献   

15.
An intracellular arginine—specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of ∼50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-β-naphthylamide as a substrate was at 37°C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to Amp S of Bacillus cereus and APII of B. thuringensis.  相似文献   

16.
K S Hui  Y J Wang  A Lajtha 《Biochemistry》1983,22(5):1062-1067
A membrane-bound aminopeptidase was purified from rat brain, and its activity was assayed by high-pressure liquid chromatography with Met-enkephalin as the substrate. The enzyme was extracted with 1% Triton X-100 and purified by chromatography, successively on DEAE-Sepharose CL-6B, Bio-Gel HTP, and Sephadex G-200 columns. The overall purification was about 1200-fold, with 25% yield. The purified enzyme showed one band on disc gel electrophoresis and two bands on sodium dodecyl sulfate electrophoresis with molecular weights of 62 000 and 66 000. The aminopeptidase has a pH optimum of 7.0, a Km of 0.28 mM, and a Vmax of 45 mumol (mg of protein)-1 min-1 for Met-enkephalin. It releases tyrosine from Met-enkephalin, but it does not split the byproduct. It does not hydrolyze gamma- or beta-endorphin, or dynorphin, but it does hydrolyze neutral and basic aminoacyl beta-naphthylamides. The enzyme is inhibited by the aminopeptidase inhibitors amastatin, bestatin, and bestatin-Gly. Its properties, such as its subcellular localization, substrate specificity, pH optimum, and molecular weight, distinguish it from leucine aminopeptidase, aminopeptidase A, aminopeptidase B, aminopeptidase M, and the soluble aminopeptidase for enkephalin degradation.  相似文献   

17.
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.  相似文献   

18.
An extracellular bacteriolytic endo-β-N-acetylglucosaminidase has been purified and its specificity of action has been investigated (Wadström & Hisatsune, 1970a,b). Some enzymic properties, such as optimum pH for enzyme activity on whole cells and cell walls of Micrococcus lysodeikticus and Staphylococcus aureus and optimum pH for stability, have been studied. The activity was maximum in 0.05m-tris–hydrochloric acid buffer, pH7.0. A higher ionic strength inhibited cell-wall hydrolysis. Since the crude and purified enzymes were found to be unstable on storage, the stabilizing and inhibiting effects of several compounds were investigated. Several heavy metal ions inactivated the enzyme at very low concentrations. Thiol compounds stabilized and thiol-reacting compounds partly inhibited the activity. Crude and purified glucosaminidase was found to be heat-stable at acidic pH and unstable at alkaline pH as previously found for several lysozymes (endo-β-N-acetylmuramidases). Other properties of the staphylococcal enzyme and hen''s-egg-white lysozyme have been compared, since the modes of action of the two are quite similar (Wadström & Hisatsune, 1970b).  相似文献   

19.
Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles.  相似文献   

20.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号