首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deoxyribonucleic acid (DNA) from Escherichia coli has been isolated as an extract containing about 50 per cent by weight protein. The protein component differs both in composition and chemical behaviour from histone which occurs in combination with the DNA in most cells of higher organisms. Although this result suggests the absence of histone-like protein, it is not clear whether the bacterial protein found is naturally bound to the bacterial DNA in the cell or becomes attached to the DNA during the course of isolation.  相似文献   

2.
Ji X  Lee K  DiPaolo B 《BioTechniques》2002,32(5):1162-1167
Impurity assays for recombinant protein therapeutics are essential to ensure batch-to-batch consistency and to meet the FDA's criteria for a well-characterized biopharmaceutical. For determination of residual host cell DNA, membrane hybridization assays utilizing radiolabeled DNA probes prepared from the host cell's genomic DNA have traditionally been used for products derivedfrom bacterial expression systems to obtain the required low picogram sensitivity. Nonradioactive methods, while desirable to eliminate radioactive waste disposal and safety issues, typically suffer from poor sensitivity and high backgrounds. We report the development of a suitably sensitive, nonradioactive assay to quantitate residual E. coli DNA levels in purified protein drugs by means of a slot-blot hybridization method. The assay utilizes digoxigenin-labeled E. coli DNA probes and SuperSignal chemiluminescent substrate. The optimized chemiluminescent hybridization assay has both low background and high sensitivity, allowing routine detection of 2.5 pg E. coli DNA. The method can be tailored for detection/quantitation of DNA contamination in recombinant protein products expressed in E. coli or other bacterial expression systems.  相似文献   

3.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

4.
Translocation of DNA across bacterial membranes.   总被引:20,自引:1,他引:19       下载免费PDF全文
DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented.  相似文献   

5.
In the present communication, we report on the expression and characterisation in Escherichia coli of mutant derivatives of saporin, a type 1 ribosome-inactivating protein from Saponaria officinalis L. The effects of substitution of Glu 176 with Lys and those of deletion of 19 amino acids at the C-terminal were evaluated both in vivo, testing the influence of expressed proteins on bacterial growth and in vitro measuring their N-glycosidase and supercoiled DNA relaxation activities. Results indicate that both modifications of the wild-type protein abolish its toxicity to bacterial cells and impair its enzymatic activity on polynucleotide substrates, either RNA or DNA.  相似文献   

6.
H S Koo  K Lau  H Y Wu    L F Liu 《Nucleic acids research》1992,20(19):5067-5072
A relaxed plasmid DNA is shown to become positively supercoiled in cell extracts from top1 strains of Saccharomyces cerevisiae. This positive supercoiling activity is dependent on the presence of bacterial DNA topoisomerase I and ATP (or dATP), and the positive supercoils generated in this reaction are not constrained by protein(s). Non-hydrolyzable ATP analogs cannot substitute for ATP in this supercoiling reaction, and the supercoiling activity is not due to RNA synthesis. The presence of an ARS sequence in the DNA does not alter the activity. Furthermore, this activity is equally active against UV irradiated or intact DNA. Extracts prepared from rad50 and rad52 mutant cells exhibited the same activity. Partial purification of this activity suggests that a protein factor with a native molecular weight of approximately 150 kDa is primarily responsible for the activity. The possibility that this supercoiling activity may be due to tracking of a protein along the intact duplex DNA is discussed.  相似文献   

7.
8.
The protein product corresponding to the gene located in the region of the coliphage Ifl genome shown to contain the code for the single-stranded DNA (ssDNA)-binding proteins of all filamentous phages so far studied has been isolated from infected bacterial cells and its amino acid sequence determined. The mature protein contains 95 amino acids (calculated molecular mass 10553 Da). Its sequence corresponds to that predicted from the DNA sequence but lacks the initiating methionine residue. Although there is little direct sequence homology between the phage Ifl protein and the ssDNA-binding proteins of the other filamentous phages that have been studied, computer-based comparisons of various physical and structural parameters showed that the phage Ifl protein contains a domain that is closely related to domains in the coliphage T4 gene 32 protein and the Pseudomonas phage Pfl ssDNA-binding protein and suggest that the Ifl protein does have a ssDNA-binding function although we were unable to show this directly.  相似文献   

9.
The irreversible binding of the radical cation of promethazine (PMZ+.) to DNA and protein in vitro and bacterial macromolecules in situ has been studied. Binding experiments were performed with synthesized [35S] promethazine. The results are compared to those with the chlorpromazine radical cation (CPZ+.). Secondary reaction products which result from fission of the alkylamino side chain are involved in the macromolecular binding of PMZ+. Compared to CPZ+. the covalent DNA binding of PMZ+. is significantly less. A larger amount of PMZ+. binds to single-stranded DNA than to double-stranded DNA. The extent of binding to proteins and RNA is of the same order as that of CPZ+. Bacterial mutagenicity tests show that the low genotoxicity of PMZ+. is related to the low DNA binding. The bacterial cytotoxicity is possibly related to the covalent protein binding. Similar results have been obtained with photoactivated promethazine (PMZ) and chlorpromazine (CPZ). The role of radical cations in the photosensitization and metabolic activation of phenothiazine drugs is discussed.  相似文献   

10.
MukB is a bacterial SMC (structural maintenance of chromosome) protein required for faithful chromosome segregation in Escherichia coli. We report here that purified MukB introduces right-handed knots into DNA in the presence of type-2 topoisomerase, indicating that the protein promotes intramolecular DNA condensation. The pattern of generated knots suggests that MukB, similar to eukaryotic condensins, stabilizes large right-handed DNA loops. In contrast to eukaryotic condensins, however, the net supercoiling stabilized by MukB was negative. Furthermore, DNA reshaping by MukB did not require ATP. These data establish that bacterial condensins alter the shape of double-stranded DNA in vitro and lend support to the notions that the right-handed knotting is the most conserved biochemical property of condensins. Finally, we found that MukB can be eluted from a heparin column in two distinct forms, one of which is inert in DNA binding or reshaping. Furthermore, we find that the activity of MukB is reversibly attenuated during chromatographic separation. Thus, MukB has a unique set of topological properties, compared with other SMC proteins, and is likely to exist in two different conformations.  相似文献   

11.
Structure and assembly of filamentous bacterial viruses.   总被引:6,自引:0,他引:6  
Filamentous bacterial viruses are flexible nucleoprotein rods, about 6 nm in diameter by 1000-2000 nm in length (depending on the virus strain). A protein shell encloses a central core of single-stranded circular DNA. The coat protein subunits forming the shell are largely alpha-helix, elongated in an axial direction, and also sloping radially, so as to overlap each other and give an arrangement of subunits reminiscent of scales on a fish. This arrangement of alpha-helices is rather like some models of myosin filaments. An early step in assembly of the virion is the formation of a complex between the viral DNA and an intracellular packaging protein that is not found in completed virions. Newly synthesized coat protein becomes associated with the plasma membrane of the cell. During the final steps of assembly, the packaging protein is displaced from the DNA and replaced by coat protein as the virion passes out through the plasma membrane of the host cell.  相似文献   

12.
The gene-5 protein of the fd filamentous bacterial virus binds to single-stranded DNA over a pH range of 2-10.3. Binding to fd DNA is several hundred-fold stronger than to bacteriophage R17 RNA or to DNA tetranucleotides.  相似文献   

13.
The prototypical bacterial RecA protein promotes recombination/repair by catalyzing strand exchange between homologous DNAs. While the mechanism of strand exchange remains enigmatic, ATP-induced cooperativity between RecA protomers is critical for its function. A human RecA homolog, human RAD51 protein (hRAD51), facilitates eukaryotic recombination/repair, although its ability to hydrolyze ATP and/or promote strand exchange appears distinct from the bacterial RecA. We have quantitatively examined the hRAD51 ATPase. The catalytic efficiency (k(cat)/K(m)) of the hRAD51 ATPase was approximately 50-fold lower than the RecA ATPase. Altering the ratio of DNA/hRAD51 and including salts that stimulate DNA strand exchange (ammonium sulfate and spermidine) were found to affect the catalytic efficiency of hRAD51. The average site size of hRAD51 was determined to be approximately 3 nt (bp) for both single-stranded and double-stranded DNA. Importantly, hRAD51 lacks the magnitude of ATP-induced cooperativity that is a hallmark of RecA. Together, these results suggest that hRAD51 may be unable to coordinate ATP hydrolysis between neighboring protomers.  相似文献   

14.
The I5 gene from the HindIII-I-fragment of the vaccinia virus strain L-IVP DNA was cloned into bacterial vector pUC19. The monospecific antiserum to the expression product of this gene in E. coli was obtained. This antiserum was demonstrated to co-precipitate the virion protein p90. The vaccinia virus strain L-LVP DNA was shown to have only one ORF coding the p90 protein instead of two ORF H5 and H4 as known for vaccinia virus strain WR. This protein is associated with the core of vaccinia virion, but some of its antigenic determinants are exposed on the surface of the viral particles.  相似文献   

15.
Overexpression of even non-toxic proteins in bacteria causes a starvation-like response: the arrest of bacterial proliferation and apoptotic-like suicidal cell death. We have shown here that, as in the cells of higher organisms, these effects are accompanied by DNA degradation. The fusion with the bacterial MBP of a polypeptide, belonging to the 14-3-3 family and normally expressed in pumpkin (C. pepo), modifies the apoptotic-like effects of overexpression of this protein in E. coli. Fusion of the full length 14-3-3 protein with the MBP considerably slows down the DNA degradation caused by overexpression of the unmodified MBP. Overexpression of the construct containing a truncated version of the 14-3-3 polypeptide causes immediate arrest of bacterial growth and rapid degradation of the chromosomal DNA. This result suggests that the DNA degradation in bacteria is an active process which can be modified to some extent by an endogenous protein.  相似文献   

16.
17.
The I6 gene from the HindIII-I-fragment of the vaccinia virus strain L-IVP DNA was cloned into bacterial vector pUC19. The monospecific antiserum to the expression product of this gene in E. coli was obtained. Using this antiserum the I6 gene was shown to code the viral protein of 34 kDa molecular weight estimated from SDS-PAGE. This protein is not included into the mature virion, but can be detected in the cytoplasm of the vaccinia virus infected cells.  相似文献   

18.
The DNA sequence of a vaccinia virus late gene contains an open reading frame that corresponds to the 28,000-dalton (28K) polypeptide made by in vitro translation of hybrid-selected mRNA. To further characterize the protein product of this late gene, we cloned a segment of DNA containing part of the open reading frame into a bacterial expression vector. The fusion protein produced from this vector, containing 151 amino acids of the predicted vaccinia virus protein, was used to immunize rabbits. The resulting antiserum specifically bound to a major 25K structural protein that is localized in the core of vaccinia virions, as well as to a 28K protein found in infected cells. Pulse-chase experiments indicated that the 25K core protein is originally made as a 28K precursor.  相似文献   

19.
A Bravo  M Salas 《The EMBO journal》1998,17(20):6096-6105
Protein p1 (85 amino acids) of the Bacillus subtilis phage phi29 is a membrane-associated protein required for in vivo viral DNA replication. In the present study, we have constructed two fusion proteins, maltose-binding protein (MalE)-p1 and MalE-p1DeltaN33. By using both sedimentation assays and negative-stain electron microscopy analysis, we demonstrated that MalE-p1 molecules self-associated into long filamentous structures, which did not assemble further into larger arrays. These structures were constituted by a core of protein p1 surrounded by MalE subunits. After removal of the MalE component by cleavage with protease factor Xa, the resulting protein p1 filaments tended to associate, forming bundles. The MalE-p1DeltaN33 fusion protein, however, did not self-interact in solution. Nevertheless, after being separated from the MalE domain by factor Xa digestion, protein p1DeltaN33 assembled into long protofilaments that associated in a highly ordered, parallel array forming large two-dimensional sheets. These structures resemble eukaryotic tubulin and bacterial FtsZ polymers. In addition, we show that protein p1 influences the rate of in vivo phi29 DNA synthesis in a temperature-dependent manner. We propose that protein p1 is a component of a viral-encoded structure that associates with the bacterial membrane. This structure would provide an anchoring site for the viral DNA replication machinery.  相似文献   

20.
Deletion of chromosomally inserted gene sequences from Clavibacter xyli subsp. cynodontis, a xylem-inhabiting endophyte, was studied in vitro and in planta. We found that nonreplicating plasmid pCG610, which conferred resistance to kanamycin and tetracycline and contained segments of C. xyli subsp. cynodontis genomic DNA, integrated into a homologous sequence in the bacterial chromosome. In addition, pCG610 contains two copies of the gene encoding the CryIA(c) insecticidal protein of Bacillus thuringiensis subsp. kurstaki HD73. Using drug resistance phenotypes and specific DNA probes, we found that the loss of all three genes arose both in vitro under nonselective conditions and in planta. The resulting segregants are probably formed by recombination between the repeated DNA sequences flanking pCG610 that resulted from the integration event into the chromosome. Eventually, segregants predominated in the bacterial population. The loss of the integrated plasmid from C. xyli subsp. cynodontis revealed a possible approach for decreasing the environmental consequences of recombinant bacteria for agricultural use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号