首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cells undergo M phase arrest in response to stresses like UV irradiation or DNA damage. Stress-activated protein kinase (SAPK, also known as c-Jun N-terminal kinase, JNK) is activated by such stress stimuli. We addressed the potential effects of SAPK activation on cell cycle regulatory proteins. Activation of SAPK strongly correlated with inhibition of cdc2/cyclin B kinase, an important regulator of G2/M phase. SAPK directly phosphorylated the cdc2 regulator, cdc25c, in vitro on serine 168 (S168). This residue was highly phosphorylated in vivo in response to stress stimuli. cdc25c phosphorylated on S168 in cells lacks phosphatase activity, and expression of a S168A mutant of cdc25c reversed the inhibition of cdc2/cyclin B kinase activity by cell stress. Antibodies directed against phosphorylated S168 detect increased phosphorylation of S168 after cell stress. We conclude that SAPK regulates cdc2/cyclin B kinase following stress events by a novel mechanism involving inhibitory phosphorylation of the cdc2-activating phosphatase cdc25c on S168.  相似文献   

2.
Abstract. Neoplastic transformation of mouse mammary epithelial cells is the result of several identifiable phenotypic changes which presumably require sequential genetic alterations. In our model system, mammary cells progress from a mortal state (virgin duct) to several morphologically distinct intermediate states. The intermediate states are distinct cell populations that are phenotypically identified as immortal, non-tumourigenic (i.e. EL11), weakly tumourigenic ductal/alveolar hyperplasia (i.e. EL12) and moderately tumourigenic alveolar hyperplasiaa (i.e. TM12) to invasive tumours (i.e. EL12T/TM12T). We have studied the changes in total cyclin A and B1 levels, cyclin A and B1 complexed to cdc2, cyclin B1cdc2 kinase activity and cyclin D proteins in EL11 and EL12 immortalized outgrowth lines. Results revealed increased levels in total cyclin B1(> 5-fold), cyclin B1/cdc2 (3–4-fold) and cyclin B1/cdc2 kinase activity (2–3.5-fold) in EL11 and EL12 phenotypes when compared to control mammary gland (virgin). No changes in the levels of total cyclin A or cycln A associated to cdc2 were observed. Cyclin D1, D2 and D3 protein levels were low in the EL11 immortal ductal outgrowth. Exposure to hormones via a pituitary isograft stimulated the synthesis of cyclin D1 and D2 but not D3 associated to cdk4 as well as total cdk4 proteins. Bromodeoxyuridine (BrdUrd) labelling indices showed marked increases in immortal ductal outgrowths (EL11 and EL12) when compared to virgin, suggesting that epithelial cells are cycling in these cell populations. Even in the presence of hormone stimulation, EL11 outgrowths were not tumourigenic, suggesting that other events are necessary to drive the cells to a tumourigenic phenotype. The results suggest that increased levels of cyclin B1 and cyclin B1-cdc2 kinase activities are early events and may be an important marker for the immortalized phenotype.  相似文献   

3.
CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with 16O and 18O ATP prior to nanoLC–MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.  相似文献   

4.
5.
6.
Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.  相似文献   

7.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

8.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

9.
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity and the sub-cellular localisation of cdc25C are regulated by phosphorylation. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures, which according to immunofluorescence analysis, electron microscopy as well as biochemical subfractionation, are proven to be the centrosomes. Since cyclin B and cdk1 are also located at the centrosomes, this subfraction of cdc25C might participate in the control of the onset of mitosis suggesting a further role for cdc25C at the centrosomes.  相似文献   

10.
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures which by immunofluorescence analysis as well as by biochemical subfractionation turned out to be the Golgi apparatus. It will be further shown that cdc25C at the Golgi fraction is an active phosphatase suggesting an additional and new role of cdc25C at the Golgi apparatus.  相似文献   

11.
At the G2/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin-B–cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G2/M in the nucleus, it has been proposed that this induces cyclin-B1–cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.  相似文献   

12.
Cyclins are pivotal in the coordinate regulation of the cell cycle. By physical association, they are able to activate at least one of the cyclin-dependent kinases, cdc2. How this association between the catalytic moiety and cyclins leads to subsequent activation of the kinase remains unclear. In this report, we describe experiments to investigate this event at a physical level. Our approach was to map the regions required on the cyclin A molecule for interaction with cdc2. We have mapped the contact regions to two small noncontiguous stretches of amino acids, residues 189 to 241 and 275 to 320, both located within the conserved cyclin box domain of the protein. We have further shown that this region not only represents a contact site for cdc2 but apparently represents an intact functional domain with respect to cdc2 activation. This region alone is sufficient to stimulate maturation when injected into immature Xenopus laevis oocytes. This observation implies that events leading to the activation of cdc2 kinase can be mediated through small regions of the cyclin molecule that are located in the cyclin box. These regions contain some of the most highly conserved residues found between all the cyclin members so far identified. This suggests that the cyclin family members may have conserved a similar mechanism to bind and activate cyclin-dependent kinases.  相似文献   

13.
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates the mitotic G2/M transition in cycling egg extracts and induces meiotic maturation in G2-arrested Xenopus oocytes in the absence of progesterone. Activated Greatwall can induce phosphorylations of Cdc25 in the absence of the activity of Cdc2, Plx1 (Xenopus Polo-like kinase) or mitogen-activated protein kinase, or in the presence of an activator of protein kinase A that normally blocks mitotic entry. The effects of active Greatwall mimic in many respects those associated with addition of the phosphatase inhibitor okadaic acid (OA); moreover, OA allows cycling extracts to enter M phase in the absence of Greatwall. Taken together, these findings support a model in which Greatwall negatively regulates a crucial phosphatase that inhibits Cdc25 activation and M phase induction.  相似文献   

14.
15.
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.  相似文献   

16.
We describe a reliable and efficient method for the purification of catalytically active and mutant inactive full-length forms of the human dual specificity phosphatase cdc25C from bacteria. The protocol involves isolating insoluble cdc25C protein in inclusion bodies, solubilization in guanidine HCL, and renaturation through rapid dilution into low salt buffer. After binding renatured proteins to an ion exchange resin, cdc25C elutes in two peaks at 350 and 450 mM NaCl. Analysis by gel exclusion chromatography and enzymatic assays reveals the highest phosphatase activity is associated with the 350 mM NaCl with little or no activity present in the 450 mM peak. Furthermore, active cdc25C has a native molecular mass of 220 kDa consistent with a potential tetrameric complex of the 55-kDa cdc25C protein. Assaying phosphatase activity against artificial substrates pNPP and 3-OMFP reveals a 220 kDa form of the phosphatase is active in a non-phosphorylated state. The protein effectively activates cdk1/cyclin B prokinase complexes in vitro in the absence of cdk1 kinase activity in an orthovanadate sensitive manner but is inactivated by A-kinase phosphorylation. In vitro phosphorylation of purified cdc25C by cdk1/cyclin B1, cdk2/cyclin A2 and cdk2/cyclin E shows that distinct TP/SP mitotic phosphorylation sites on cdc25C are differentially phosphorylated by these 3 cdk/cyclin complexes associated with different levels of cdc25C activation. Finally, we show that endogenous native cdc25C from human cells is present in high molecular weight complexes with other proteins and resolves mostly above 200-kDa. These data show that untagged cdc25C can be purified with a simple protocol as an active dual specificity phosphatase with a native molecular mass consistent with a homo-tetrameric configuration.  相似文献   

17.
18.
The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.  相似文献   

19.
Based on molecular modeling studies, macrocyclic inhibitors of phosphatase cdc25B were synthetically derived from steroids. A preliminary SAR for this new template was elaborated. A series of compounds shows inhibition of cdc25B in the low micromolar range and good selectivity versus other phosphatases. The compounds did not show a significant antiproliferative effect in MaTu or HaCaT cells.  相似文献   

20.
Phosphoprotein profiling by Kinetworks trade mark analysis of M-phase-arrested HeLa cells by nocodazole treatment revealed that a novel mitosis-specific phosphorylation event occurred in the nucleolar protein B23/nucleophosmin at a conserved Ser-4 residue. Consistent with the resemblance of the Ser-4 phosphorylation site to the Polo-like kinase 1 (Plk1) consensus recognition sequence, inhibition of Plk1 by a kinase-defective mutation (K82M) abrogated B23 Ser-4 phosphorylation, whereas activation of Plk1 by a constitutively active mutation (T210D) enhanced its phosphorylation following in vivo transfection and in vitro phosphorylation assays. Depletion of endogenous Plk1 by RNA interference abolished B23 Ser-4 phosphorylation. The physical interaction of Plk1 and B23 was further demonstrated by their co-immunoprecipitation and glutathione S-transferase fusion protein pull-down assays. Interference of Ser-4 phosphorylation of B23 induced multiple mitotic defects in HeLa cells, including aberrant numbers of centrosomes, elongation and fragmentation of nuclei, and incomplete cytokinesis. The phenotypes of B23 mutants are reminiscent of a subset of those described previously in Plk1 mutants. Our findings provide insights into the biochemical mechanism underlying the role of Plk1 in mitosis regulation through the identification of Ser-4 in B23 as a major physiological substrate of Plk1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号