首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biosynthesis of the molybdenum cofactor, a chelate of molybdenum or tungsten with a novel pterin, occurs in virtually all organisms including humans. In the cofactor, the metal is complexed to the unique cis-dithiolene moiety located on the pyran ring of molybdopterin. Escherichia coli molybdopterin synthase, the protein responsible for adding the dithiolene to a desulfo precursor termed precursor Z, is a dimer of dimers containing the MoaD and MoaE proteins. The sulfur used for dithiolene formation is carried in the form of a thiocarboxylate at the MoaD C terminus. Using an intein expression system for preparation of thiocarboxylated MoaD, the mechanism of the molybdopterin synthase reaction was examined. A stoichiometry of 2 molecules of thiocarboxylated MoaD per conversion of a single precursor Z molecule to molybdopterin was observed. Examination of several synthase variants bearing mutations in the MoaE subunit identified Lys-119 as a residue essential for activity and Arg-39 and Lys-126 as other residues critical for the reaction. An intermediate of the synthase reaction was identified and characterized. This intermediate remains tightly associated with the protein and is the predominant product formed by synthase containing the K126A variant of MoaE. Mass spectral data obtained from protein-bound intermediate are consistent with a monosulfurated structure that contains a terminal phosphate group similar to that present in molybdopterin.  相似文献   

2.
In almost all biological life forms, molybdenum and tungsten are coordinated by molybdopterin (MPT), a tricyclic pyranopterin containing a cis-dithiolene group. Together, the metal and the pterin moiety form the redox reactive molybdenum cofactor (Moco). Mutations in patients with deficiencies in Moco biosynthesis usually occur in the enzymes catalyzing the first and second steps of biosynthesis, leading to the formation of precursor Z and MPT, respectively. The second step is catalyzed by the heterotetrameric MPT synthase protein consisting of two large (MoaE) and two small (MoaD) subunits with the MoaD subunits located at opposite ends of a central MoaE dimer. Previous studies have determined that the conversion of the sulfur- and metal-free precursor Z to MPT by MPT synthase involves the transfer of sulfur atoms from a C-terminal MoaD thiocarboxylate to the C-1' and C-2' positions of precursor Z. Here, we present the crystal structures of non-thiocarboxylated MPT synthase from Staphylococcus aureus in its apo form and in complex with precursor Z. A comparison of the two structures reveals conformational changes in a loop that participates in interactions with precursor Z. In the complex, precursor Z is bound by strictly conserved residues in a pocket at the MoaE dimer interface in close proximity of the C-terminal glycine of MoaD. Biochemical evidence indicates that the first dithiolene sulfur is added at the C-2' position.  相似文献   

3.
Biosynthesis of the molybdenum cofactor involves the initial formation of precursor Z, its subsequent conversion to molybdopterin (MPT) by MPT synthase, and attachment of molybdenum to the dithiolene moiety of MPT. The sulfur used for the formation of the dithiolene group of MPT exists in the form of a thiocarboxylate group at the C terminus of the smaller subunit of MPT synthase. Human MPT synthase contains the MOCS2A and MOCS2B proteins that display homology to the Escherichia coli proteins MoaD and MoaE, respectively. MOCS2A and MOCS2B were purified after heterologous expression in E. coli, and the separately purified subunits readily assemble into a functional MPT synthase tetramer. The rate of conversion of precursor Z to MPT by the human enzyme is slower than that of the eubacterial homologue. To obtain insights into the molecular mechanism leading to human molybdenum cofactor deficiency, site-specific mutations identified in patients showing symptoms of molybdenum cofactor deficiency were generated. Characterization of a V7F substitution in MOCS2A, identified in a patient with an unusual mild form of the disease, showed that the mutation weakens the interaction between MOCS2A and MOCS2B, whereas a MOCS2B-E168K mutation identified in a severely affected patient attenuates binding of precursor Z.  相似文献   

4.
In Escherichia coli, the MoaD protein plays a central role in the conversion of precursor Z to molybdopterin (MPT) during molybdenum cofactor biosynthesis. MoaD has a fold similar to that of ubiquitin and contains a highly conserved C-terminal Gly-Gly motif, which in its active form contains a transferrable sulfur in the form of a thiocarboxylate group. During MPT biosynthesis, MoaD cycles between two different heterotetrameric complexes, one with MoaE to form MPT synthase and the other with MoeB, a protein similar to E1 in the ubiquitin pathway, to regenerate its transferrable sulfur. To determine the specific roles of each of the two terminal Gly residues with regard to the MoaD cycle, variants at the penultimate (Gly80) or terminal (Gly81) residues of both MoaD and thiocarboxylated MoaD were created. These variants were analyzed to determine their effects on complex formation with MoaE and MoeB, formation of the MoaD-acyl-adenylate complex, transfer of sulfur to precursor Z to form MPT, and total cofactor biosynthesis. The combined results show that while conservative substitutions at Gly80 had little effect on any of the processes that were examined, the terminal MoaD residue (Gly81) is important for transfer of sulfur to precursor Z and essential for formation of the MoaD-AMP complex. These results further our understanding of the mechanistic similarities of the MoaD-MoeB reaction to that of the ubiquitin-E1 system.  相似文献   

5.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

6.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.  相似文献   

7.
The molybdopterin (MPT) synthase complex in Escherichia coli consists of two MoaE subunits and two MoaD subunits in a heterotetrameric structure with the two MoaE subunits forming a central dimer. Each MoaD subunit binds to a single MoaE molecule to form two identical MoaE/MoaD interfaces. Here we define the thermodynamic properties of the interaction between MoaE and MoaD in MPT synthase using a H/D exchange and matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy based method termed SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX-derived protein folding free energies and m values are reported for MoaE in the presence and absence of MoaD and MoaD-SH, the thiocarboxylated form of MoaD that is essential for the catalytic activity of MPT synthase. The protein folding free energy measurements were used to calculate a dissociation constant of 17 +/- 7 microM for the binding of MoaD to MoaE in inactive MPT synthase and a dissociation constant of 2.6 +/- 0.9 microM for the binding of MoaD-SH to MoaE in active MPT synthase. The increased binding affinity of MoaD-SH for MoaE is consistent with a previously proposed mechanism for the MPT synthase reaction. Using the increased m values exhibited by MoaE in the presence of either MoaD subunit, the solvent accessible surface area buried upon formation of the subunit interface in MPT synthase was estimated to be 2378 A(2) for inactive MPT synthase and 4117 A(2) for active MPT synthase.  相似文献   

8.
9.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

10.
Molybdopterin (MPT) is a pyranopterin with a unique dithiolene group coordinating molybdenum (Mo) or tungsten (W) in all Mo- and W-enzymes except nitrogenase. In Escherichia coli, MPT is formed by incorporation of two sulfur atoms into precursor Z, which is catalyzed by MPT synthase. The recently solved crystal structure of MPT synthase (Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V., and Schindelin, H. (2000) Nat. Struct. Biol. 8, 42-46) shows the heterotetrameric nature of the enzyme that is composed of two small (MoaD) and two large subunits (MoaE). According to sequence and structural similarities among MoaD, ubiquitin, and ThiS, a thiocarboxylation of the C terminus of MoaD is proposed that would serve as the source of sulfur that is transferred to precursor Z. Here, we describe the in vitro generation of carboxylated and thiocarboxylated MoaD. Both forms of MoaD are monomeric and are able to form a heterotetrameric complex after coincubation in equimolar ratios with MoaE. Only the thiocarboxylated MPT synthase complex was found to be able to convert precursor Z in vitro to MPT. Slight but significant differences between the carboxylated and the thiocarboxylated MPT synthase can be seen using size exclusion chromatography. A two-step reaction of MPT synthesis is proposed where the dithiolene is generated by two thiocarboxylates derived from a single tetrameric MPT synthase.  相似文献   

11.
Amino acid sequence comparisons of Escherichia coli MoeB suggested that the MoeB-dependent formation of a C-terminal thiocarboxylate on the MoaD subunit of molybdopterin synthase might resemble the ubiquitin-activating step in the ubiquitin-targeted degradation of proteins in eukaryotes. To determine the exact role of MoeB in molybdopterin biosynthesis, the protein was purified after homologous overexpression. Using purified proteins, we have demonstrated the ATP-dependent formation of a complex of MoeB and MoaD adenylate that is stable to gel filtration. Mass spectrometry of the complex revealed a peak of a molecular mass of 9,073 Da, the expected mass of MoaD adenylate. However, unlike the ubiquitin activation reaction, the formation of a thioester intermediate between MoeB and MoaD could not be observed. There was also no evidence for a MoeB-bound sulfur during the sulfuration of MoaD. Amino acid substitutions were generated in every cysteine residue in MoeB. All of these exhibited activity comparable to the wild type, with the exception of mutations in cysteine residues located in putative Zn-binding motifs. For these cysteines, loss of activity correlated with loss of metal binding.  相似文献   

12.
The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an l-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human l-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from l-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.  相似文献   

13.
We have determined the crystal structure of the Escherichia coli ThiS-ThiF protein complex at 2.0 A resolution. ThiS and ThiF are bacterial proteins involved in the synthesis of the thiazole moiety of thiamin. ThiF catalyzes the adenylation of the carboxy terminus of ThiS and the subsequent displacement of AMP catalyzed by ThiI-persulfide to give a ThiS-ThiI acyl disulfide. Disulfide interchange, involving Cys184 on ThiF, then generates the ThiS-ThiF acyl disulfide, which functions as the sulfur donor for thiazole formation. ThiS is a small 7.2 kDa protein that structurally resembles ubiquitin and the molybdopterin biosynthetic protein MoaD. ThiF is a 27 kDa protein with distinct sequence and structural similarity to the ubiquitin activating enzyme E1 and the molybdopterin biosynthetic protein MoeB. The ThiF-ThiS structure clarifies the mechanism of the sulfur transfer chemistry involved in thiazole biosynthesis.  相似文献   

14.
15.
The molybdenum cofactor (Moco) is found in a variety of enzymes present in all phyla and comprises a family of related molecules containing molybdopterin (MPT), a tricyclic pyranopterin with a cis-dithiolene group, as the invariant essential moiety. MPT biosynthesis involves a conserved pathway, but some organisms perform additional reactions that modify MPT. In eubacteria, the cofactor is often present in a dinucleotide form combining MPT and a purine or pyrimidine nucleotide via a pyrophosphate linkage. In Escherichia coli, the MobA protein links a guanosine 5'-phosphate to MPT forming molybdopterin guanine dinucleotide. This reaction requires GTP, MgCl(2), and the MPT form of the cofactor and can efficiently reconstitute Rhodobacter sphaeroides apo-DMSOR, an enzyme that requires molybdopterin guanine dinucleotide for activity. In this paper, we present the crystal structure of MobA, a protein containing 194 amino acids. The MobA monomer has an alpha/beta architecture in which the N-terminal half of the molecule adopts a Rossman fold. The structure of MobA has striking similarity to Bacillus subtilis SpsA, a nucleotide-diphospho-sugar transferase involved in sporulation. The cocrystal structure of MobA and GTP reveals that the GTP-binding site is located in the N-terminal half of the molecule. Conserved residues located primarily in three signature sequence motifs form crucial interactions with the bound nucleotide. The binding site for MPT is located adjacent to the GTP-binding site in the C-terminal half of the molecule, which contains another set of conserved residues presumably involved in MPT binding.  相似文献   

16.

Background

Molybdopterin cofactor (MoCo) biosynthesis in Mycobacterium tuberculosis is associated with a multiplicity of genes encoding several enzymes in the pathway, including the molybdopterin (MPT) synthase, a hetero tetramer comprising two MoaD and two MoaE subunits. In addition to moaD1, moaD2, moaE1, moaE2, the M. tuberculosis genome also contains a moaX gene which encodes an MPT-synthase in which the MoaD and MoaE domains are located on a single polypeptide. In this study, we assessed the requirement for post-translational cleavage of MoaX for functionality of this novel, fused MPT synthase and attempted to establish a functional hierarchy for the various MPT-synthase encoding genes in M. tuberculosis.

Results

Using a heterologous Mycobacterium smegmatis host and the activity of the MoCo-dependent nitrate reductase, we confirmed that moaD2 and moaE2 from M. tuberculosis together encode a functional MPT synthase. In contrast, moaD1 displayed no functionality in this system, even in the presence of the MoeBR sulphurtransferase, which contains the rhodansese-like domain, predicted to activate MoaD subunits. We demonstrated that cleavage of MoaX into its constituent MoaD and MoaE subunits was required for MPT synthase activity and confirmed that cleavage occurs between the Gly82 and Ser83 residues in MoaX. Further analysis of the Gly81-Gly82 motif confirmed that both of these residues are necessary for catalysis and that the Gly81 was required for recognition/cleavage of MoaX by an as yet unidentified protease. In addition, the MoaE component of MoaX was able to function in conjunction with M. smegmatis MoaD2 suggesting that cleavage of MoaX renders functionally interchangeable subunits. Expression of MoaX in E. coli revealed that incorrect post-translational processing is responsible for the lack of activity of MoaX in this heterologous host.

Conclusions

There is a degree of functional interchangeability between the MPT synthase subunits of M. tuberculosis. In the case of MoaX, post-translational cleavage at the Gly82 residue is required for function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0355-2) contains supplementary material, which is available to authorized users.  相似文献   

17.
Dimethylsulfoxide (DMSO) reductase was purified to electrophoretic homogeneity from the periplasmic fraction of a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans. The enzyme had a molecular weight of 82,000 and had no subunit. It contained 1 mol of molybdenum per mol of enzyme, but iron and acid-labile sulfur were not present. The UV-visible spectrum showed only one absorption maximum at 280 nm. Denaturation of the enzyme released a molybdopterin cofactor, the fluorescence spectra of which were almost the same as those of a form B derivative of molybdopterin found in formate dehydrogenase. The Km value for DMSO was 15 microM, which was much lower than that for trimethylamin-N-oxide (TMAO), whereas Vmax with TMAO was larger than that with DMSO.  相似文献   

18.
Xanthine dehydrogenase has been purified from Pseudomonas aeruginosa cultured on a rich medium and induced with hypoxanthine. The enzyme was shown to contain FAD, iron sulfur centers and a molybdenum cofactor as prosthetic groups. Analysis of the molybdenum cofactor in this enzyme has revealed that the cofactor contains molybdopterin (MPT) rather than molybdopterin guanine dinucleotide or molybdopterin cytosine dinucleotide which have previously been identified in a number of molybdoenzymes of bacterial origin. The pterin cofactor in P.aeruginosa xanthine dehydrogenase was alkylated and the resulting product was identified as dicarboxamidomethyl molybdopterin. In addition, the pterin released from the enzyme by denaturation with guanidine-HCl was found to chromatograph on Sephadex G-15 with an apparent molecular weight of 350. These results document the first example of a bacterial enzyme with a molybdenum cofactor comprising molybdopterin and the metal only.  相似文献   

19.
Sequence alignments of human molybdopterin synthase sulfurase, MOCS3, showed that the N-terminal domain is homologous to Escherichia coli MoeB, whereas the C-terminal domain is homologous to rhodanese-like proteins. Previous studies showed that the activity of the separately purified rhodanese-like domain of MOCS3 displayed 1000-fold lower activity in comparison to bovine rhodanese with thiosulfate as sulfur source. When the six amino acid active site loop of MOCS3 rhodanese-like domain was exchanged with the loop found in bovine rhodanese, thiosulfate:cyanide sulfurtransferase activity was increased 165-fold. Site-directed mutagenesis of each individual residue of the active site loop of the MOCS3 rhodanese-like domain showed that the charge of the last amino acid determines thiosulfate sulfurtransferase activity. Replacing Asp417 by threonine resulted in 90-fold increased activity, whereas replacing it by arginine increased the activity 470-fold. Using a fully defined in vitro system containing precursor Z, MOCS2A, E. coli MoaE, E. coli MoeB, Mg-ATP, MOCS3 rhodanese-like domain, and thiosulfate, it was shown that sulfur transfer to MOCS2A was also affected by the alterations, but not as drastically. Our studies revealed that in humans and most eukaryotes thiosulfate is not the physiologic sulfur donor for MOCS3, whereas in bacterial homologs, which have an arginine at the last position of the active site loop, thiosulfate can be used as a sulfur source for molybdenum cofactor biosynthesis. The phylogenetic analysis of MoeB homologs showed that eukaryotic homologs are of bacterial origin. Furthermore, it could be shown that an MoeB homolog named MoeZ, where the dual CXXC zinc-binding motif of the MoeB domain is not present, arose independently several times during evolution.  相似文献   

20.
It has been shown that conversion of precursor Z to molybdopterin (MPT) by Escherichia coli MPT synthase entails the transfer of the sulfur atom of the C-terminal thiocarboxylate from the small subunit of the synthase to generate the dithiolene group of MPT and that the moeB mutant of E. coli contains inactive MPT synthase devoid of the thiocarboxylate. The data presented here demonstrate that l-cysteine can serve as the source of the sulfur for the biosynthesis of MPT in vitro but only in the presence of a persulfide-containing sulfurtransferase such as IscS, cysteine sulfinate desulfinase (CSD), or CsdB. A fully defined in vitro system has been developed in which an inactive form of MPT synthase can be activated by incubation with MoeB, Mg-ATP, l-cysteine, and one of the NifS-like sulfurtransferases, and the addition of precursor Z to the in vitro system gives rise to MPT formation. The use of radiolabeled l-[(35)S]cysteine has demonstrated that both sulfurs of the dithiolene group of MPT originate from l-cysteine. It was found that MPT can be produced from precursor Z in an E. coli iscS mutant strain, indicating that IscS is not required for the in vivo sulfuration of MPT synthase. A comparison of the ability of the three sulfurtransferases to provide the sulfur for MPT formation showed the highest activity for CSD in the in vitro system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号