首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphocellulose chromatography of pigeon leg muscle extract revealed the existence of two well-separated forms of AMP deaminase. This was in contrast to the pigeon breast muscle extract, which yielded only one form. The two leg muscle enzyme isoforms manifested similar kinetic and regulatory properties. They were activated by very low concentration of potassium ions and demonstrated similar patterns of pH and effector dependence. At pH 6.5, as well as at other pH values tested. ADP and ATP slightly stimulated, whereas GTP and orthophosphate inhibited the two molecular forms of pigeons leg muscle enzyme. Surprisingly, the molecular form of AMP deaminase present in pigeon breast muscle was inhibited by ATP at all pH values tested. The kinetic and regulatory properties of the three molecular forms of pigeon skeletal muscle AMP deaminase examined do not resemble those which have been described for pigeon heart muscle enzyme.  相似文献   

2.
Homogeneous preparations of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase from rabbit skeletal (Peak I) and bovine heart muscle have been compared. Each enzyme has an S20,w value of 7.0. Each enzyme binds 2 mol of cyclic AMP per mol of enzyme and is dissociated in the presence of saturating concentrations of cyclic AMP into a demeric regulatory subunit-cyclic AMP complex and two catalytic subunits. The isolated subunits recombine, resulting in the formation of the original holoenzyme in each case. Several differences between the two enzymes were found. Different salt concentrations are necessary for elution of the respective enzyme from DEAE-cellulose. Their regulatory subunits differ with respect to their sedimentation constants and mobility on sodium dodecyl sulfate gel electrophoresis. The regulatory subunit of the heart enzyme is rapidly phosphorylated by MgATP but this does not occur with the skeletal muscle enzyme. MgATP is bound with high affinity only to the skeletal muscle enzyme. The enzymes have different apparent dissociation constants and Hill coefficients for cyclic AMP binding. With the skeletal muscle enzyme MgATP increases the dissociation constants for cyclic AMP about 10-fold and decreases the Hill coefficient, while with the heart enzyme phosphorylation decreases the cissociation constant for cyclic AMP 5- to 6-fold and increases the Hill coefficient. Different concentrations of cyclic AMP are required to dissociate the skeletal and heart muscle enzymes. The presence of MgATP increases the concentration of cyclic AMP required to dissociate the skeletal muscle enzyme but decreases the concentration necessary to dissociate the heart enzyme.  相似文献   

3.
The use of an affinity chromatography step performed with an immunoadsorbent consisting of anti-horse muscle acylphosphatase antibodies covalently linked to Sepharose 4B allowed us to purify horse heart acylphosphatase in a very rapid and efficient fashion. As in skeletal muscle, also in heart the enzyme is present as both a mixed disulfide with glutathione and a S-S dimer. The abundance of these forms in heart is quite lower than in skeletal muscle. The comparison of the molecular forms so purified with those obtained from horse skeletal muscle showed the same aminoacid composition, tryptic fingerprint, together with strictly similar apparent molecular weight and main kinetic parameters, supporting the conclusion that the acylphosphatase present in heart is the same enzyme as that purified from skeletal muscle.  相似文献   

4.
5.
Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives--myogenin, Myf-5, and MRF4/herculin/Myf-6--are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment.  相似文献   

6.
In mammalian organisms the regulatory or phosphorylatable myosin light chains in heart and slow skeletal muscle have been shown to be identical and presumable constitute the product of a single gene. We analyzed the expression of the avian cardiac myosin light chain (MLC) 2-A in heart and slow skeletal muscle by a combination of experimental approaches, e.g., two-dimensional gel electrophoresis of the protein and hybridization of mRNA to specific MLC 2-A sequences cloned from chicken. The investigations have indicated that, unlike in mammals, in avian organisms the phosphorylatable myosin light chains from heart and slow skeletal muscle are distinct proteins and therefore products of different genes. The expression of MLC 2-A is restricted to the myocardium and no evidence was found that it is shared with slow skeletal muscle.  相似文献   

7.
Kinetic characterization of human heart and skeletal muscle CK isoenzymes   总被引:1,自引:0,他引:1  
C Schneider  G A Stull  F S Apple 《Enzyme》1988,39(4):220-226
The purpose of this study was to investigate the kinetic properties of human creatine kinase (CK) isoenzymes partially purified from heart and skeletal muscle. Utilizing the backward CK-catalyzed reaction of creatine phosphate + ADP in equilibrium creatine + ATP, Km values for heart and skeletal muscle CK MM (3.7 mmol/l) were significantly (p less than 0.05) greater than CK MB (2.1 mmol/l) which were significantly (p less than 0.05) greater than mitochondrial CK (1.8 mmol/l) at variable creatine phosphate and fixed ADP concentrations. However, Km values for similar isoenzymes from the two different tissues, i.e., CK MB from heart vs. skeletal muscle, were not different. These results show that kinetic analysis of CK isoenzymes cannot differentiate the tissue source of elevated blood CK isoenzymes after the acute stress of long distance running or after acute myocardial infarction.  相似文献   

8.
Kliachko OS  Ozerniuk ND 《Ontogenez》2001,32(5):374-376
We studied properties of lactate dehydrogenase isozymes expressed at different stages of Danio rerio ontogenesis. H4-LDH and a minor fraction H3M1 are expressed during embryonic development. The muscle isozyme (M4) appears after the beginning of muscle contractions in the embryo. H4 and M4 isozymes isolated from the heart and skeletal muscle of the adult fish, respectively, show significant differences in terms of Km, activation energy (AE), and inactivation temperature. H4-LDH isozymes isolated from unfertilized eggs, the skeletal muscle of larvae, and the heart of the adult fish differ in Km and activation energy, as well as in inactivation temperature. We propose that these differences may be associated with a ligand interacting with the H4 isozyme at different steps of ontogenesis.  相似文献   

9.
The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.  相似文献   

10.
The variations of kinetic parameters with pH of the activity of 14-day-old chicken embryo and adult hen skeletal muscle AMP-deaminase in the presence and in the absence of adenine nucleotide effectors have been examined. The results obtained indicate that the kinetic and regulatory properties of the two developmental forms of AMP-deaminase are different.  相似文献   

11.
The variations of kinetic parameters with pH of the activity of 14-day-old chicken embryo and adult hen skeletal muscle AMP-deaminase in the presence and in the absence of adenine nucleotide effectors have been examined. The results obtained indicate that the kinetic and regulatory properties of the two developmental forms of AMP-deaminase are different.  相似文献   

12.
13.
We have isolated a cDNA that encodes the human regulatory myosin light chain isoform predominant in adult atrial muscle. The cDNA contains an open reading frame of 175 amino acids and encodes a hydrophilic protein of a largely helical structure with two potential phosphorylation sites. The protein is different from any other regulatory myosin light chain so far described and is the product of a previously uncharacterized single copy gene. An isoform-specific probe was used to analyze the expression of this isoform in adult muscle and in cardiac and skeletal muscle development in vivo and in vitro. Parallel analysis of the corresponding human alkali myosin light chain (predominant in adult atrium) showed that both isoforms are expressed in early heart development, in both atrium and ventricle. Although the atrial alkali light chain is expressed throughout embryonic striated muscle development, the regulatory myosin light chain was not detected in skeletal myogenesis in vivo or in vitro. Thus the atrial isoforms are not universally or exclusively "paired" and can be independently regulated. We propose that the manner in which these particular isoforms fulfill the functional requirements of the muscle at different developmental times may have direct impact on their regulation.  相似文献   

14.
In order to study the regulatory mechanism of developmental and tissue-specific expression of the muscle type dystrophin gene in mice, transgenic mice were generated carrying the 900 bp genomic fragment derived from the muscle type dystrophin promoter region fused to the bacterial lacZ gene. Six independent transgenic mouse lines showed specific reporter gene expression in the right heart, but not in skeletal or smooth muscle. The reporter gene expression was first detected in the presumptive right ventricle of the embryos at 8.5 days post coitum, and the expression continued only in the right ventricle throughout the development and at the adult stage. The results indicate that the 900 bp genomic fragment contains the regulatory element required for expression of dystrophin only in the right heart, suggesting that distinct elements are responsible for the expression in the left and right compartments of the heart, and/or in skeletal and smooth muscle cells. Based on these findings, the relationship between defects in muscle type promoter and the diseases caused by abnormal dystrophin expression is discussed.  相似文献   

15.
The interaction of two isoenzymes of lactate dehydrogenase from pig heart muscle (H(4)) and rabbit skeletal muscle (M(4)), with immobilized nucleotides was examined: the effects of pH and temperature on the binding of lactate dehydrogenase were studied with immobilized NAD(+) matrices. The influence of substrate, product and sulphite on the binding of heart muscle lactate dehydrogenase to immobilized NAD(+) was investigated. The interaction of both lactate dehydrogenase isoenzymes with immobilized pyridine and adenine nucleotides and their derivatives were measured. The effects of these parameters on the interaction of lactate dehydrogenase with immobilized nucleotides were correlated with the known kinetic and molecular properties of the enzymes in free solution.  相似文献   

16.
为了解翘嘴鳜miR-222的时空表达规律, 研究利用实时荧光定量PCR的方法检测miR-222在翘嘴鳜不同组织、胚胎发育及胚后发育中的相对表达丰度。研究结果显示, miR-222在肌肉相关的组织中表达较高, 特别是在成年翘嘴鳜的白肌中表达最高; 胚胎发育阶段结果显示, miR-222在胚胎发育的2细胞期就有表达, 而表达量在心动期达到最高。不同组织及不同发育阶段的差异性表达结果表明, miR-222很可能参与调控鳜鱼肌肉的生长发育。为研究合成代谢过程中miR-222在肌肉生长调控中的表达规律, 通过对翘嘴鳜幼鱼在饥饿一周后饱食一餐的实验处理下, 利用实时荧光定量的方法测定miR-222在骨骼肌中的相对表达变化。结果显示, miR-222的表达量在恢复喂食后的1h显著上升(P0.05), 表明miR-222很可能是调节鱼类骨骼肌生长过程中, 参与快速应答信号系统的一类miRNA。研究为miR-222在鱼类发育中的调控作用提供一些理论依据。    相似文献   

17.
L-carnitine is an essential cofactor for the transport of fatty acids across the mitochondrial membranes. L-carnitine can be provided by food products or biosynthesized in the liver. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as the skeletal muscle and the heart. The intracellular transport of L-carnitine into the cell requires specific transporters and today, several of these have been characterized. Most of them belong to the solute carrier family. Heart is one of the major target for carnitine transport and use, however basic properties of carnitine uptake by heart cells have never been studied. In this paper, the transport of L-carnitine by rat heart explants has been examined and the kinetic properties of this transport determined and compared to data obtained in skeletal muscle explants. As in muscle, L-carnitine uptake by heart cells was shown to be dependent on sodium and was inhibited by L-carnitine analogues. Molecules known to interact with the skeletal muscle L-carnitine transport were studied in the heart. While trimethyl hydrazinium propionate (THP) was shown to fully inhibit the L-carnitine uptake by muscle cells, it remained inefficient in inhibiting the L-carnitine uptake by heart cells. On the other hand, compounds such as verapamil and AZT were both able to inhibit both the skeletal muscle and the cardiac uptake of L-carnitine. These data suggested that the muscle and heart systems for L-carnitine uptake exhibited different systems of regulation and these results have to be taken in consideration while administrating those compounds that can alter l-carnitine uptake in the muscle and the heart and can lead to damage to these tissues.  相似文献   

18.
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.  相似文献   

19.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号