首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA fragmentation is common phenomenon for apoptotic cell death. DNA fragmentation factor, called DFF40 (CAD: mouse homologue), is a main nuclease for apoptotic DNA fragmentation. Nuclease activity of DFF40 is normally inhibited by DFF45 by tight interaction via CIDE domain without apoptotic stimuli. Once effector caspase is activated during apoptosis signaling, it cleave DFF45, allowing DFF40 to enter the nucleus and cleave chromosomal DNA. Unlike mammalian system, apoptotic DNA fragmentation in the fly might be controlled by four DFF-related proteins, known as Drep1, Drep2, Drep3 and Drep4. Although the function of Drep1 and Drep4 is well known as DFF45 and DFF40 homologues, respectively, the function of Drep2 and Drep3 is still unclear. DFF-related proteins contain a conserved CIDE domain of ~90 amino acid residues that is involved in protein–protein interaction. Here, we showed that Drep1 directly bind to Drep2 as well as Drep4 via CIDE domain. In addition, we found that the interaction of Drep2 and Drep4 to Drep1 was not competitive indicating that Drep2 and Drep4 bind different place of Drep1. All together, we suggest that Drep1 might be involved in apoptotic DNA fragmentation of fly system by direct interaction with Drep2 as well as Drep4.  相似文献   

2.
DNA fragmentation is the hallmark of apoptotic cells and mainly mediated by the DNA fragmentation factor DFF40(CAD)/DFF45(ICAD). DFF40 is a novel nuclease, whereas DFF45 is an inhibitor that can suppress the nuclease activity. Apoptotic DNA fragmentation in the fly is controlled by four DFF-related proteins, known as Drep1, 2, 3 and 4. However, the functions of Drep2 and Drep3 are totally unknown. Here, we found that Drep2 is a novel nuclease whose activity is inhibited by Drep3 through a tight interaction with the CIDE domain. Our results suggest that the fly has dual apoptotic DNA fragmentation systems: Drep1: Drep4 and Drep2: Drep3 complexes.Structured summary of protein interactionsDrep2 CIDE and Drep-3 CIDE bind by blue native page (View interaction)Drep2 CIDE and Drep-3 CIDE bind by molecular sieving (View interaction)  相似文献   

3.
Although the functions of CIDE domain-containing proteins, including DFF40, DFF45, CIDE-A, CIDE-B, and FSP27, in apoptotic DNA fragmentation and lipid homeostasis have been studied extensively in mammals, the functions of four CIDE domain-containing proteins identified in the fly, namely DREP1, 2, 3, and 4, have not been explored much. Recent structural study of DREP4, a fly orthologue of mammalian DFF40 (an endonuclease involved in apoptotic DNA fragmentation), showed that the CIDE domain of DREP4 (and DFF40) forms filament-like assembly, which is critical for the corresponding function. The current study aimed to investigate the mechanism of filament formation of DREP4 CIDE and to characterize the same. DREP4 CIDE was shown to specifically bind to histones H1 and H2, an event important for the nuclease activity of DREP4. Based on the current experimental results, we proposed the mechanism underlying the process of apoptotic DNA fragmentation.Subject terms: Proteins, Enzymes, X-ray crystallography  相似文献   

4.
《The Journal of cell biology》1996,135(4):1125-1137
hDlg, a human homologue of the Drosophila Dig tumor suppressor, contains two binding sites for protein 4.1, one within a domain containing three PSD-95/Dlg/ZO-1 (PDZ) repeats and another within the alternatively spliced I3 domain. Here, we further define the PDZ- protein 4.1 interaction in vitro and show the functional role of both 4.1 binding sites in situ. A single protease-resistant structure formed by the entirety of both PDZ repeats 1 and 2 (PDZ1-2) contains the protein 4.1-binding site. Both this PDZ1-2 site and the I3 domain associate with a 30-kD NH2-terminal domain of protein 4.1 that is conserved in ezrin/radixin/moesin (ERM) proteins. We show that both protein 4.1 and the ezrin ERM protein interact with the murine form of hDlg in a coprecipitating immune complex. In permeabilized cells and tissues, either the PDZ1-2 domain or the I3 domain alone are sufficient for proper subcellular targeting of exogenous hDlg. In situ, PDZ1-2- mediated targeting involves interactions with both 4.1/ERM proteins and proteins containing the COOH-terminal T/SXV motif. I3-mediated targeting depends exclusively on interactions with 4.1/ERM proteins. Our data elucidates the multivalent nature of membrane-associated guanylate kinase homologue (MAGUK) targeting, thus beginning to define those protein interactions that are critical in MAGUK function.  相似文献   

5.
6.
Pichler G  Jack A  Wolf P  Hake SB 《PloS one》2012,7(5):e36967
Fluorescent fusion proteins are widely used to study protein localization and interaction dynamics in living cells. However, to fully characterize proteins and to understand their function it is crucial to determine biochemical characteristics such as enzymatic activity and binding specificity. Here we demonstrate an easy, reliable and versatile medium/high-throughput method to study biochemical and functional characteristics of fluorescent fusion proteins. Using a new system based on 96-well micro plates comprising an immobilized GFP-binding protein (GFP-mulitTrap), we performed fast and efficient one-step purification of different GFP- and YFP-fusion proteins from crude cell lysate. After immobilization we determined highly reproducible binding ratios of cellular expressed GFP-fusion proteins to histone-tail peptides, DNA or selected RFP-fusion proteins. In particular, we found Cbx1 preferentially binding to di-and trimethylated H3K9 that is abolished by phosphorylation of the adjacent serine. DNA binding assays showed, that the MBD domain of MeCP2 discriminates between fully methylated over unmethylated DNA and protein-protein interactions studies demonstrate, that the PBD domain of Dnmt1 is essential for binding to PCNA. Moreover, using an ELISA-based approach, we detected endogenous PCNA and histone H3 bound at GFP-fusions. In addition, we quantified the level of H3K4me2 on nucleosomes containing different histone variants. In summary, we present an innovative medium/high-throughput approach to analyse binding specificities of fluroescently labeled fusion proteins and to detect endogenous interacting factors in a fast and reliable manner in vitro.  相似文献   

7.
Vaccinia virus (VACV) encodes many proteins that interfere with the host immune system. Vaccinia virus A46 protein specifically targets the BB‐loop motif of TIR‐domain‐containing proteins to disrupt receptor:adaptor (e.g., TLR4:MAL and TLR4:TRAM) interactions of the toll‐like receptor signaling. The crystal structure of A46 (75–227) determined at 2.58 Å resolution showed that A46 formed a homodimer and adopted a Bcl‐2‐like fold similar to other VACV proteins such as A52, B14, and K7. Our structure also revealed that VIPER (viral inhibitory peptide of TLR4) motif resides in the α1‐helix and six residues of the VIPER region were exposed to surface for binding to target proteins. In vitro binding assays between wild type and six mutants A46 (75–227) and full‐length MAL identified critical residues in the VIPER motif. Computational modeling of the A46:MAL complex structure showed that the VIPER region of A46 and AB loop of MAL protein formed a major binding interface. In summary, A46 is a homodimer with a Bcl‐2‐like fold and VIPER motif is believed to be involved in the interaction with MAL protein based on our binding assays.  相似文献   

8.
We previously reported the cloning of the thousand and one-amino acid protein kinase 1 (TAO1), a rat homolog of the Saccharomyces cerevisiae protein kinase sterile 20 protein. Here we report the complete sequence and properties of a related rat protein kinase TAO2. Like TAO1, recombinant TAO2 selectively activated mitogen-activated protein/extracellular signal-regulated kinase kinases (MEKs) 3, 4, and 6 of the stress-responsive mitogen-activated protein kinase pathways in vitro and copurified with MEK3 endogenous to Sf9 cells. To examine TAO2 interactions with MEKs, the MEK binding domain of TAO2 was localized to an approximately 135-residue sequence just C-terminal to the TAO2 catalytic domain. In vitro this MEK binding domain associated with MEKs 3 and 6 but not MEKs 1, 2, or 4. Using chimeric MEK proteins, we found that the MEK N terminus was sufficient for binding to TAO2. Catalytic activity of full-length TAO2 enhanced its binding to MEKs. However, neither the autophosphorylation of the MEK binding domain of TAO2 nor the activity of MEK itself was required for MEK binding. These results suggest that TAO proteins lie in stress-sensitive kinase cascades and define a mechanism by which these kinases may organize downstream targets.  相似文献   

9.
Proteins of the nucleic acid‐binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB‐fold in protein structures. Here, we have analyzed the superfamily of nucleic acid‐binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA‐binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA‐binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain‐containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB‐fold is a distinctive feature of S1 domain‐containing proteins. Proteins from the other families and superfamilies have either one OB‐fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain‐containing proteins. Proteins 2017; 85:602–613. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
PDZ (Post-synaptic density, 95 kDa, Discs large, Zona Occludens-1) domains are protein interaction domains that bind to the carboxy-terminal amino acids of binding partners, heterodimerize with other PDZ domains, and also bind phosphoinositides. PDZ domain containing proteins are frequently involved in the assembly of multi-protein complexes and clustering of transmembrane proteins. LNX1 (Ligand of Numb, protein X 1) is a RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligase that also includes four PDZ domains suggesting it functions as a scaffold for a multi-protein complex. Here we use a human protein array to identify direct LNX1 PDZ domain binding partners. Screening of 8,000 human proteins with isolated PDZ domains identified 53 potential LNX1 binding partners. We combined this set with LNX1 interacting proteins identified by other methods to assemble a list of 220 LNX1 interacting proteins. Bioinformatic analysis of this protein list was used to select interactions of interest for future studies. Using this approach we identify and confirm six novel LNX1 binding partners: KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2 and PBK, and suggest that LNX1 functions as a signalling scaffold.  相似文献   

11.
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double‐stranded DNA‐binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N‐terminus, a central H1/H5‐like domain and a C‐terminally located coiled‐coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double‐stranded DNA in vitro, while the central H1/H5‐like domain interacts non‐specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5‐like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle‐regulated, as the level of nuclear‐associated GFP diminishes during mitotic entry and GFP progressively re‐associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell‐cycle progression, with the other involving rapid exchange.  相似文献   

12.
13.
HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY‐containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family‐interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY–WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY‐containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.  相似文献   

14.
Dock, the Drosophila orthologue of Nck, is an adaptor protein that is known to function in axonal guidance paradigms in the fly including proper development of neuronal connections in photoreceptor cells and axonal tracking in Bolwig's organ. To develop a better understanding of axonal guidance at the molecular level, we purified proteins in a complex with the SH2 domain of Dock from fly Schneider 2 cells. A protein designated p145 was identified and shown to be a tyrosine kinase with sequence similarity to mammalian Cdc-42-associated tyrosine kinases. We demonstrate that Drosophila Ack (DAck) can be co-immunoprecipitated with Dock and DSH3PX1 from fly cell extracts. The domains responsible for the in vitro interaction between Drosophila Ack and Dock were identified, and direct protein-protein interactions between complex members were established. We conclude that DSH3PX1 is a substrate for DAck in vivo and in vitro and define one of the major in vitro sites of DSH3PX1 phosphorylation to be Tyr-56. Tyr-56 is located within the SH3 domain of DSH3PX1, placing it in an important position for regulating the binding of proline-rich targets. We demonstrate that Tyr-56 phosphorylation by DAck diminishes the DSH3PX1 SH3 domain interaction with the Wiskott-Aldrich Syndrome protein while enabling DSH3PX1 to associate with Dock. Furthermore, when Tyr-56 is mutated to aspartate or glutamate, the binding to Wiskott-Aldrich Syndrome protein is abrogated. These results suggest that the phosphorylation of DSH3PX1 by DAck targets this sorting nexin to a protein complex that includes Dock, an adaptor protein important for axonal guidance.  相似文献   

15.
Lutheran (Lu) blood group antigens and the basal cell adhesion molecule antigen reside on two glycoproteins that belong to the Ig superfamily (IgSF) and carry five Ig-like extracellular domains. These glycoproteins act as widely expressed adhesion molecules and represent the unique receptors for laminin-10/11 in erythroid cells. Here, we report the mapping of IgSF domains responsible for binding to laminin. In plasmonic resonance surface experiments, only recombinant Lu proteins containing the N-terminal IgSF domains 1-3 were able to bind laminin-10/11 and to inhibit binding of laminin to Lu-expressing K562 cells. Mutant recombinant proteins containing only IgSF domain 1, domains 1 + 2, domains 1 + 3, domains 2 + 3, domain 3, domain 4, domain 5, and domains 4 + 5 failed to bind laminin as well as a construct containing all of the extracellular domains except domain 3. Altogether, these results indicate that IgSF domains 1-3 are involved in laminin binding and that a specific spatial arrangement of these three first domains is most probably necessary for interaction. Neither the RGD nor the N-glycosylation motifs present in IgSF domain 3 were involved in laminin binding.  相似文献   

16.
The Toll‐like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen‐associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain‐containing proteins. Mutations in the BB loop of the Toll‐like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lpsd mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain‐containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein–protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild‐type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways.  相似文献   

17.
18.
The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast cells. It is concluded that the heterodimeric complex of the P1/P2 proteins is formed preferentially. Formation of homodimers (P1/P1 and P2/P2) can also be observed, though with much less efficiency. Regarding that, we propose to describe the double heterodimeric complex as a protein configuration which forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins.  相似文献   

19.
One mechanism used by receptor tyrosine kinases to relay a signal to different downstream effector molecules is to use adaptor proteins that provide docking sites for a variety of proteins. The daughter of sevenless (dos) gene was isolated in a genetic screen for components acting downstream of the Sevenless (Sev) receptor tyrosine kinase. Dos contains a N-terminally located PH domain and several tyrosine residues within consensus binding sites for a number of SH2 domain containing proteins. The structural features of Dos and experiments demonstrating tyrosine phosphorylation of Dos upon Sev activation suggested that Dos belongs to the family of multisite adaptor proteins that include the Insulin Receptor Substrate (IRS) proteins, Gab1, and Gab2. Here, we studied the structural requirements for Dos function in receptor tyrosine kinase mediated signaling processes by expressing mutated dos transgenes in the fly. We show that mutant Dos proteins lacking the putative binding sites for the SH2 domains of Shc, PhospholipaseC-γ (PLC-γ) and the regulatory subunit of Phosphoinositide 3-kinase (PI3-K) can substitute the loss of endogenous Dos function during development. In contrast, tyrosine 801, corresponding to a predicted Corkscrew (Csw) tyrosine phosphatase SH2 domain binding site, is essential for Dos function. Furthermore, we assayed whether the Pleckstrin homology (PH) domain is required for Dos function and localization. Evidence is provided that deletion or mutation of the PH domain interferes with the function but not with localization of the Dos protein. The Dos PH domain can be replaced by the Gab1 PH domain but not by a heterologous membrane anchor, suggesting a specific function of the PH domain in regulating signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号