首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A sensitive method for the enantioselective high-performance liquid chromatography (HPLC) determination of nicardipine in human plasma is described. (+)-Nicardipine, (−)-nicardipine and (+)-barnidipine as an internal standard are detected by an ultraviolet detector at 254 nm. Racemic nicardipine in human plasma was extracted by a rapid and simple procedure based on C18 bonded-phase extraction. The extraction samples were purified and concentrated on a pre-column using a C1 stationary phase and the enantiomers of nicardipine are quantitatively separated by HPLC on a Sumichiral OA-4500 column, containing a chemically modified Pirkle-type stationary phase. Determination of (+)- and (−)-nicardipine was possible in a concentration range of 5–100 ng ml−1 and the limit of detection in plasma was 2.5 ng ml−1. The recoveries of (+)- and (−)-nicardipine added to plasma were 91.4–98.4% and 93.3–96.7%, respectively, with coefficients of variation of less than 9.0 and 9.4% respectively. The method was applied to low level monitoring of (+)- and (−)-nicardipine in plasma from healthy volunteers.  相似文献   

2.
A reversed-phase high-performance liquid chromatographic method is described for the simultaneous determination of idarubicin and idarubicinol in rat plasma. Blood samples were analyzed from 16 rats which had received an intravascular dose of 2.25 mg kg−1 idarubicin. After deproteinization with acetonitrile, the separation was performed with a LiChrospher 100 RP-18 column (5 μm), using fluorescence detection (excitation: 485 nm/emission: 542 nm). The mean recovery was 95.6% for idarubicin and 90.7% for idarubicinol, respectively. The detection limit was 0.25 ng ml−1 using an injection volume of 50 μl. Daily relative standard deviation (RSD) was 3.2% (10 ng idarubicin/ml, n=10) and 4.4% (10 ng idarubicinol/ml, n=10).  相似文献   

3.
A simple high-performance liquid chromatographic method for determination of ticlopidine in human plasma using ultra violet detection was developed. The separation of the investigated compound and internal standard was achieved on a C18 BD column with a 0.01 M potassium dihydrogen phosphate buffer (pH 4)–acetonitrile–methanol (20:40:40, v/v) mobile phase. The detection was performed at 215 nm. The compounds were isolated from plasma by Bond Elut C18 solid-phase extraction, the mean absolute recovery was 84.9%. The limit of quantitation was 10 ng ml−1, the limit of detection was 5 ng ml−1. The bioanalytical method was validated with respect to linearity, within- and between-day accuracy and precision, system suitability and stability. All validated parameters were found to be within the internationally required limits. The developed analytical method for ticlopidine was found to be suitable for application in pharmacokinetic studies and human drug monitoring.  相似文献   

4.
A reversed-phase high-performance liquid chromatographic method was developed to quantify a decapeptide anticoagulant in rat and monkey plasma. The compound and internal standard, a nonapeptide analogue, were extracted from plasma with an amino solid-phase extraction column with an extraction efficiency in the range 75–90%. A C18 analytical column was used to separate the analytes by gradient elution followed by ultraviolet detection at 215 nm. Quantification of the decapeptide over the concentration range 0.1–10.1 μg/ml resulted in an assay relative error and relative standard deviation both less than 10%. The anticoagulant decapeptide was stable in both rat and monkey plasma frozen at −20°C.  相似文献   

5.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

6.
A simple and sensitive high-performance liquid chromatographic method has been developed to measure megazol in human plasma. The method was optimized and validated according to the Washington Concensus Conference on the Validation of Analytical Methods (V.P. Shah et al., Eur. J. Drug Metab. Pharmacokinet., 15 (1991) 249). The criteria of complete validation were specificity, linearity, precision, analytical recovery, dilution and stability. It involved extraction of the plasma with dichloromethane, followed by reversed-phase high-performance liquid chromatography using a KromasilR C8 column and UV detection at 360 nm. The retention times of the internal standard (tinidazol) and megazol were 6.10 and 9.60 min, respevtively. The standard curve was linear from 2 ng ml−1 (limit of quantification) to 2000 ng ml−1. The coefficients of variation for all the criteria of validation were less than 6%; 85 to 92% extraction efficiencies were obtained. Megazol was stable during the storage period (one month at −20°C) in plasma and for two months at 25°C in standard solution. The method was tested by measuring the plasma concentration following oral administration to rat and was shown to be suitable for pharmacokinetic studies.  相似文献   

7.
Analytical methods are described for the selective, rapid and sensitive determination of R- and S-apomorphine, apocodeine and isoapocodeine and the glucuronic acid and sulfate conjugates in plasma and urine. The methods involve liquid-liquid extraction followed by high-performance liquid chromatography with electrochemical detection. The glucuronide and sulfate conjugates are determined after enzymatic hydrolysis. For the assay of R- and S-apomorphine a 10 μm Chiralcel OD-R column is used and the voltage of the detector is set at 0.7 V. The mobile phase is a mixture of aqueous phase (pH 4.0)-acetonitrile (65:35, v/v). At a flow-rate of 0.9 ml min−1 the total run time is ca. 15 min. The detection limits are 0.3 and 0.6 ng ml−1 for R- and S- apomorphine, respectively (signal-to-noise ratio 3). The intra- and inter-assay variations are <5% in the concentration range of 2.5-25 ng ml−1 for plasma samples, and <4% in the concentration range of 40-400 ng ml−1 for urine samples. For the assay of apomorphine, apocodeine and isoapocodeine, a 5 μm C18 column was used and the voltage of the detector set at 0.825 V. Ion-pairing chromatography was used. The mobile phase is a mixture of aqueous phase (pH 3.0)-acetonitrile (75:25, v/v). At a flow-rate of 0.8 ml min−1 the total run time is ca. 14 min. The detection limits of this assay are 1.0 ng ml−1 for apomorphine and 2.5 ng ml−1 for both apocodeine and isoapocodeine (signal-to-noise ratio 3). The inter-assay variations are 5% in the concentration range of 5-40 ng ml−1 for plasma samples and 7% in the concentration range of 50-500 ng ml−1 for urine samples. The glucuronic acid and sulfate conjugates of the various compounds are hydrolysed by incubation of the samples with β-glucuronidase and sulfatase type H-1, respectively. Hydrolysis was complete after 5 h of incubation. No measurable degradation of apomorphine, apocodeine and isoapocodeine occurred during the incubation. A pharmacokinetic study of apomorphine, following the intravenous infusion of 30 μg kg−1 for 15 min in a patient with Parkinson's disease, demonstrates the utility of the methods: both the pharmacokinetic parameters of the parent drug and the appearance of apomorphine plus metabolites in urine could be determined.  相似文献   

8.
A simple, sensitive and fully automated analytical method for the analysis of codeine in human plasma is presented. Samples are added with oxycodone, used as internal standard (I.S.), and directly loaded in the autosampler tray. An on-line sample clean-up system based on solid-phase extraction (SPE) cartridges (Bond-Elut C2, 20 mg) and valve switching (Prospekt) is used. Isocratic elution improved reproducibility and allowed the recirculation of the mobile phase. A Hypersil BDS C18, 3 μm, 10×0.46 cm column was used and detection was done by UV monitoring at 212 nm. Retention times of norcodeine (codeine metabolite), codeine and oxycodone (I.S.) were 5.5, 6.4 and 9.1 min, respectively. Morphine was left to elute in the chromatographic front. Detection limit for codeine was 0.5 μg l−1 and inter-assay precision (expressed as relative standard deviation) and accuracy (expressed as relative error) measured at 2 μg l−1 were 5.03% and 1.82%. Calibration range was 2–140 μg l−1.  相似文献   

9.
An assay, based on pre-column derivatization and micro-high-performance liquid chromatography–tandem mass spectrometry, was developed for the determination of the GABAB agonist CGP 44532 in rat plasma. CGP 44532, a highly polar 3-amino-2(S)-hydroxypropylmethylphosphinic acid, presented difficulties in developing a chromatographic method for the analysis of the compound in rat plasma. Instead of analyzing the target compound directly, it was derivatized prior to separation to a 4-nitrobenzylcarbamate isopropyliden derivative. In order to reach the required quantitation limit, on-line solid-phase extraction was utilized for sample clean-up and reversed-phase micro-column high-performance liquid chromatography, for separation of the plasma samples. The separated compounds were detected by negative electrospray tandem mass spectrometry in selected reaction monitoring mode. The derivatives show good chromatographic and mass spectrometric properties and both the target compound and the internal standard, could be eluted as symmetrical peaks with good signal/noise ratio. The MS–MS detection was selective and sensitive due to the straight fragmentation pattern. After injection of 200-μl sample aliquots, the limit of quantification was 10 ng ml−1. The analytical assay is useable in the range of 10–500 ng ml−1.  相似文献   

10.
An isocratic reversed-phase HPLC method was developed to determine cefepime levels in plasma and vitreous fluid. Cefepime and the internal standard cefadroxil were separated on a Shandon Hypersil BDS C18 column by using a mobile phase of 25 mM sodium dihydrogen phosphate monohydrate (pH 3) and methanol (87:13, v/v). Ultraviolet detection was carried out at 270 nm. The retention times were 4.80 min for cefepime and 7.70 min for cefadroxil. This fast procedure which involves an efficient protein precipitation step (addition of HClO4), allows a quantification limit of 2.52 μg ml−1 and a detection limit of 0.83 μg ml−1. Recoveries and absolute recoveries of cefepime from plasma were 96.13–99.44% and 94–102.5% respectively. The intra-day and inter-day reproducibilities were less than 2% for cefepime at 10, 30, 50 μg ml−1 (n=10).The method was proved to be suitable for determining cefepime levels in human plasma and was modified to measure vitreous fluid samples.  相似文献   

11.
A HPLC assay and solid-phase extraction technique from human plasma has been developed and validated for the novel anticancer agent CT2584, 1-(11-dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthine, which has recently completed a phase I trial at the Christie Hospital, Manchester under the auspices of the CRC phase I/II committee. Following addition of CT2576, 1-(11-octylamino-10-hydroxylundecyl)-3,7-dimethylxanthine, as internal standard, a solid-phase extraction cartridge (100 mg cyanopropyl) was used to isolate the drug CT2584 from human plasma. Analysis was performed by reversed-phase chromatography. CT2576 was used as internal standard at a concentration of 4 μg ml−1 for the quantification of CT2584 from plasma for the duration of this work. The lower limit of quantification for the drug CT2584 in buffer using this assay was found to be 0.0122 μM (0.008 μg ml−1) and 0.048 μM (0.027 μg ml−1) when extracted from human plasma.  相似文献   

12.
A modified method for the determination of gacyclidine enantiomers in human plasma by GC–MS with selected-ion monitoring using the deuterated derivative of gacyclidine (d3-gacyclidine) as internal standard was developed. Following a single-step liquid–liquid extraction with hexane, drug enantiomers were separated on a chiral fused-silica capillary column (CP-Chirasil-Dex; Chrompack). The fragment ion, m/z 266, was selected for monitoring d3-gacyclidine (retention times of 35.2 and 35.6 min for the (+)- and (−)-enantiomer, respectively) whereas the fragment ion, m/z 263, was selected for quantitation of gacyclidine (retention times of 35.4 and 35.9 min for the (+)- and (−)-enantiomer, respectively). The limit of quantitation for each enantiomer was 0.3 ng/ml, using 1 ml of sample, with a relative standard deviation (RSD) <14% and a signal-to-noise ratio of 5. The extraction recovery of both gacyclidine enantiomers from human plasma was about 75%. The calibration curves were linear (r2>0.996) over the working range of 0.312 to 20 ng/ml. Within- and between-day RSD were <9% at 5, 10 and 20 ng/ml, and <16% at 0.312, 0.625, 1.25 and 2.5 ng/ml. Intraday and interday bias were less than 11% for both enantiomers. The chromatographic behavior of d3-gacyclidine remained satisfactory even after more than 500 injections. Applicability of this specific and stereoselective assay is demonstrated for a clinical pharmacokinetic study with racemic gacyclidine.  相似文献   

13.
Capillary zone electrophoresis with indirect ultraviolet detection was used for the determination of fosfomycin in serum. Running buffer consisted of a mixture of 200 mM sodium borate with 10 mM phenylphosphonic acid used as ultraviolet absorbing background electrolyte. Relationships between the pH of the buffer and the efficiency of the separation (migration times and selectivities) or the sensitivity of detection were investigated. The method was then validated over a 10–100 μg ml−1 concentration range to be applied to further therapeutic drug monitoring. The choice of ethylphosphonic acid as internal standard is discussed. The specificity and the linearity of the technique are demonstrated. The inter-day precision was satisfactory with a relative standard deviation of less than 2%. Accuracy was calculated with a standard error near 0.5 and 18% for 100 and 10 μg ml−1, respectively.  相似文献   

14.
This report describes a rapid and sensitive analytical method for the quantification of the neuroactive steroids alphaxalone and pregnanolone in rat plasma using derivatization with dansyl hydrazine as fluorescent label. The method involves protein precipitation, alkaline derivatization and extraction of the compounds and internal standard pregnenolone with dichloromethane, followed by isocratic reversed-phase high-performance liquid chromatography on a 3-μm Microsphere C18 column with fluorescence detection at wavelengths 332 nm and 516 nm for excitation and emission, respectively. The mobile phase consists of a mixture of 25 mM acetate buffer (pH 3.7)–acetonitrile (45:55, v/v for alphaxalone and 40:60, v/v for pregnanolone) with a flow-rate of 1 ml/min. The total run time was 35 min. In the concentration range of 0.010–10 μg ml−1, the intra- and inter-assay coefficients of variation were less than 17% for both methods. In 50 μl plasma samples the corresponding limits of detection were 10 ng ml−1 (signal-to-noise ratio=3). The utility of the analytical method was established by analyzing plasma samples from rats, which had received an intravenous administration of 5 mg kg−1 alphaxalone or pregnanolone. Values for clearance, volume of distribution at steady state and terminal half life were 71.9 ml min−1 kg−1, 814 mg kg−1 and 13.5 min for alphaxalone and 69.2 ml min−1 kg−1, 1638 ml kg−1 and 27.8 min for pregnanolone, respectively. Due to its simplicity and sensitivity this method can be used on a routine basis for pharmacokinetic analysis of neuroactive steroids.  相似文献   

15.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

16.
Fragments of chopped lung from indomethacin treated guinea-pigs had an anti-aggregating effect when added to human platelet rich plasma (PRP), probably due to the production of prostacyclin (PGI2) since the effect was inhibited by 15-hydroperoxy arachidonic acid (15-HPAA, 10 μg ml−1). Both 15-HPAA (1–20 μg ml−1 min−1) and 13-hydroperoxy linoleic acid (13-HPLA, 20 μg ml−1 min−1) caused a marked enhancement of the anaphylactic release of histamine, slow-reacting substance of anaphylaxis (SRS-A) and rabbit aorta contracting substance (RCS) from guinea-pig isolated perfused lungs. This enhancement was not reversed by the concomitant infusion of either PGI2 (5 μg ml−1 min−1) or 6-oxo-prostaglandin F (6-oxo-PGF, 5 μg ml−1 min−1). Anaphylactic release of histamine and SRS-A from guinea-pig perfused lungs was not inhibited by PGI2 (10 ng - 10 μg ml−1 min−1) but was inhibited by PGE2 (5 and 10 μg ml−1 min−1). Antiserum raised to 5,6-dihydro prostacyclin (PGI1) in rabbits, which also binds PGI2, had no effect on the release of anaphylactic mediators. The fatty acid hydroperoxides may enhance mediator release either indirectly by augmenting thromboxane production or by a direct effect on sensitized cells. Further experiments to distinguish between these alternatives are described in the accompanying paper (27).  相似文献   

17.
A gradient reversed-phase HPLC analysis for the direct measurement of gemfibrozil (GEM) and four oxidative metabolites in plasma and urine of humans and in tissue homogenates of rats was developed. The corresponding acyl glucuronides and the covalently bound protein adducts (in protein precipitates) were determined after liberation from the respective conjugates via alkaline hydrolysis. The limits of detection for the covalent adducts in human plasma are: 10 ng ml−1 (GEM), 20 ng ml−1 (M1), 0.5 ng ml−1 (M2, M4), and 5 ng ml−1 (M3). The method was validated with respect to selectivity, recovery, linearity, precision, and accuracy. It has been applied to the analysis of preclinical and clinical studies. Pharmacokinetic profiles of gemfibrozil, its metabolites, and covalent adducts in human plasma and rat tissue homogenates are given.  相似文献   

18.
A simple, highly selective and reproducible reversed-phase high-performance liquid chromatography method has been developed for the analysis of the new anti-cancer pro-drug AQ4N. The sample pre-treatment involves a simple protein precipitation protocol, using methanol. Chromatographic separations were performed using a HiChrom HIRPB (25 cm×4.6 mm I.D.) column, with mobile phase of acetonitrile–ammonium formate buffer (0.05 M) (22:78, v/v), with final pH adjusted to 3.6 with formic acid. The flow-rate was maintained at 1.2 ml min−1. Detection was via photodiode array performed in the UV range at 242 nm and, since the compounds are an intense blue colour, in the visible range at 612 nm. The structurally related compound mitoxantrone was used as internal standard. The validated quantification range of the method was 0.05–10.0 μg ml−1 in mouse plasma. The inter-day relative standard deviations (RSDs) (n=5) ranged from 18.4% and 12.1% at 0.05 μg ml−1 to 2.9% and 3.3% at 10.0 μg ml−1 for AQ4N and AQ4, respectively. The intra-day RSDs for supplemented mouse plasma (n=6) ranged from 8.2% and 14.2% at 0.05 μg ml−1 to 7.6% and 11.5% at 10.0 μg ml−1 for AQ4N and AQ4, respectively. The overall recovery of the procedure for AQ4N was 89.4±1.77% and 76.1±7.26% for AQ4. The limit of detection was 50 ng ml−1 with a 100 μl sample volume. The method described provides a suitable technique for the future analysis of low levels of AQ4N and AQ4 in clinical samples.  相似文献   

19.
A specific, precise and accurate assay for determination of rifabutin in human plasma using Extrelut column extraction was developed and validated. Rifabutin concentrations were calculated with a standard curve ranging from 5 to 800 ng ml−1, using a split-curve approach. Chromatographic peaks were separated by means of a 5 μm Symmetry Shield RP8 using a KH2PO4 (0.05 M) buffer–acetonitrile mobile phase. Detection wavelength was set at 275 nm. Chromatography was carried out at room temperature (20–25°C). The limit of quantification was 5 ng ml−1. The recovery was over 71%. The intra-day precision of the assay was 5, 7, and 1% while the inter-day precision was 11.2, 8.1, and 5.8% at concentrations of 30, 150 and 500 ng ml−1, respectively. The accuracy ranged from 99 to 108%. Forty of the drugs most commonly administered to HIV-positive patients were found not to interfere with the assay. The assay has been used in a comparative study of rifabutin pharmacokinetics in HIV-positive patients with or without wasting syndrome.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic method using acetonitrile–methanol–1 M perchloric acid–water (25:9:0.8:95, v/v/v) at a flow-rate of 1.0 ml min−1 on LiChrospher 100 RP 18 column (250×4 mm; 5 μm) with UV (254 nm) detection has been developed for the determination of sulfalene in plasma and blood cells after oral administration of the antimalarial drug metakelfin. Calibration curves were linear in the range 0.5–100 μg ml−1. The limit of quantification was 50 ng ml−1. Within-day and day-to-day coefficients of variation averaged 3.84 and 5.31%, respectively. Mean extraction recoveries of sulfalene from plasma and blood cells were 87.21 and 84.65%, respectively. Mean concentrations of sulfalene in plasma of P. falciparum cases on days 2, 7 and 15 were 44.58, 14.90 and 1.70 μg ml−1, respectively; in blood cells concentrations of sulfalene were 7.77, 3.25 and 0.75 μg ml−1, respectively, after oral treatment with two tablets (1000 mg) of metakelfin. Significant difference was recorded on day 2 for sulfalene concentration in blood cells of healthy and P. falciparum cases (t=9.49; P<0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号