首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.  相似文献   

2.
BACKGROUND/AIMS: Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. METHODS: Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. RESULTS: TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. CONCLUSIONS: The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.  相似文献   

3.
4.
In order to determine the possible effects of hemolysate on brain microvascular endothelial cells (BMECs), we examined the effects of hemolysate on the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1), generation of reactive oxygen species (ROS), and NF-κB activation in rat BMECs. Hemolysate induced the expression of ICAM-1 and MCP-1 in endothelial cells. In addition, hemolysate stimulated nuclear translocation of the p65 subunit of NF-κB, and NF-κB DNA-binding activity in BMECs. Furthermore, hemolysate increased ROS generation, and hemolysate-induced ICAM-1and MCP-1 expression and NF-κB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results indicate that hemolysate can induce inflammatory responses that increase expression of ICAM-1 and MCP-1, through ROS-dependent NF-κB activation in BMECs.  相似文献   

5.
目的:探讨纳他卡林对低氧引起大鼠主动脉内皮细胞损伤的保护作用及其机制。方法:选取大鼠主动脉内皮细胞作为体外低氧损伤的细胞模型,分为正常对照组、低氧模型组、纳他卡林低、中、高剂量组,利用MTT法测定细胞生存率,硝酸还原酶法检测一氧化氮(NO)释放,RT-PCR法检测细胞间粘附因子-1(ICAM-1)、内皮素-1(ET-1)、血管内皮生长因子(VEGF)mRNA水平。结果:纳他卡林三个剂量组均可逆转低氧所致的血管内皮细胞功能改变,包括提高内皮细胞生存活力和NO的释放水平,显著抑制低氧引发的内皮细胞ICAM-1,ET-1,VEGF mRNA表达量的上调。结论:纳他卡林对低氧诱发的血管内皮细胞分泌功能改变、细胞通透性增加及炎性因子的分泌均具有保护作用。  相似文献   

6.
The baculovirus has recently emerged as a promising vector for in vivo gene therapy. To investigate its potential as a delivery vector for an anti-virus ribozyme targeting HIV-1, we constructed recombinant baculovirus vectors bearing a ribozyme-synthesizing cassette driven by the tRNA(i)(Met) promoter with enhanced transduction efficiency by displaying vesicular stomatitis virus glycoprotein (VSV-G) on the viral envelope. Transduction of HeLa CD4(+) cells with a recombinant baculovirus delivering the HIV-1 U5 gene-specific ribozyme dramatically suppressed HIV-1 expression in this cell line. The VSV-G pseudotyped baculovirus vector-transduced ribozyme potently inhibited HIV-1 replication compared to a recombinant baculovirus vector-transduced ribozyme lacking VSV-G. The use of a baculovirus vector might be beneficial for application in gene therapy.  相似文献   

7.
Intercellular adhesion molecule-1 (ICAM-1) of the vascular endothelium plays a key role in the development of pulmonary oxygen toxicity. We studied the effect of steroid on hyperoxia-induced ICAM-1 expression using cultured endothelial cells in vitro. Human pulmonary artery endothelial cells (HPAECs) were cultured to confluence, and then the monolayers were exposed to either control (21% O(2)-5% CO(2)) or hyperoxic (90% O(2)-5% CO(2)) conditions with and without a synthetic glucocorticoid, methylprednisolone (MP). MP reduced hyperoxia-induced ICAM-1 and ICAM-1 mRNA expression in a dose-dependent manner. Neutrophil adhesion to hyperoxia-exposed endothelial cells was also inhibited by MP treatment. In addition, MP attenuated hyperoxia-induced H(2)O(2) production in HPAECs as assessed by flow cytometry. An electrophoretic mobility shift assay demonstrated that hyperoxia activated nuclear factor-kappaB (NF-kappaB) but not activator protein-1 (AP-1) and that MP attenuated hyperoxia-induced NF-kappaB activation dose dependently. With Western immunoblot analysis, IkappaB-alpha expression was decreased by hyperoxia and increased by MP treatment. These results suggest that MP downregulates hyperoxia-induced ICAM-1 expression by inhibiting NF-kappaB activation via increased IkappaB-alpha expression.  相似文献   

8.
BACKGROUND: Costimulatory and cellular adhesion molecules are thought to be essential components of antigen presentation in the immune response to cancer. The current studies examine gene transfer utilizing herpes viral amplicon vectors (HSV) to direct surface expression of adhesion molecules, and specifically evaluate the potential of a tumor-expressing intercellular adhesion molecule-1 (ICAM-1) to elicit an anti-tumor response. MATERIALS AND METHODS: The human ICAM-1 (hICAM1) gene was inserted into an HSV amplicon vector and tested in a transplantable rat hepatocellular carcinoma and in a human colorectal cancer cell line. Cell surface ICAM-1 expression was assessed by flow cytometry. Lymphocyte binding to HSV-hICAM1-transduced cells was compared with that to cells transduced with HSV not carrying the ICAM gene. Tumorigenicity of HSV-hICAM1-transduced tumor cells were tested in syngeneic Buffalo rats. Additionally, immunization with irradiated (10,000 rads) HSV-hICAM1-transduced tumor cells was performed to determine its effect on tumor growth. RESULTS: A 20-min exposure of tumor cells at a multiplicity of infection (MOI) of 1 resulted in high-level cell surface expression of human ICAM in approximately 25% of tumor cells. Transduced rat or human tumor cells exhibited significantly enhanced binding of lymphocytes (p < 0.05). HSV-hICAM1-transduced cells elicited an increase in infiltration by CD4(+) lymphocytes in vivo and exhibited decreased tumorigenicity. Immunization with irradiated HSV-hICAM1-transduced cells protected against growth of subsequent injected parental tumor cells. CONCLUSIONS: HSV amplicon-mediated gene transfer is an efficient method for modifying the cell surface expression of adhesion molecules. Increased tumor expression of ICAM-1 represents a promising immune anti-cancer strategy.  相似文献   

9.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

10.
11.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

12.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammer-head ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

13.
Interleukin-18 (IL-18) is a novel proinflammatory cytokine found in serum and joints of patients with rheumatoid arthritis (RA). We studied a novel role for IL-18 in mediating cell adhesion, a vital component of the inflammation found in RA and other inflammatory diseases. We examined the expression of cellular cell adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and RA synovial fibroblasts using flow cytometry. Adhesion of the monocyte-like cell line HL-60 to endothelial cells was determined by immunofluorescence. IL-18 significantly enhanced ICAM-1 and VCAM-1 expression on endothelial cells and RA synovial fibroblasts. In addition, IL-18 induced E-selectin expression on endothelial cells and promoted the adhesion of HL-60 cells to IL-18-stimulated endothelial cells. Neutralizing anti-VCAM-1 and anti-E-selectin could completely inhibit HL-60 adherence to endothelial cells. IL-18-induced adhesion molecule expression appears to be mediated through nuclear factor kappa B (NF kappa B) and phosphatidyl-inositol 3 kinase (PI 3-kinase) since addition of inhibitors to either NF kappa B (pyrrolidine dithiocarbamate and N-acetyl-l-cysteine) or PI 3-kinase (LY294002) inhibited RA synovial fibroblast VCAM-1 expression by 50 to 60%. Addition of both inhibitors resulted in inhibition of VCAM-1 expression by 85%. In conclusion, the ability of IL-18 to induce adhesion molecule expression on endothelial cells and RA synovial fibroblasts indicates that IL-18 may contribute to RA joint inflammation by enhancing the recruitment of leukocytes into the joint. IL-18 requires NF kappa B as well as PI 3-kinase to induce VCAM-1 on RA synovial fibroblasts, suggesting that there may be two distinct pathways in IL-18-induced adhesion molecule expression.  相似文献   

14.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammerhead ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

15.
16.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S-1-P) are both low molecular weight lysophospholipid (LPL) ligands that are recognized by the Edg family of G protein-coupled receptors. In endothelial cells, these two ligands activate Edg receptors, resulting in cell proliferation and cell migration. The intercellular adhesion molecule-1 (ICAM-1, CD54) is one of many cell adhesion molecules belonging to the immunoglobulin superfamily. This study showed that LPA and S-1-P enhance ICAM-1 expression at both the mRNA and protein levels in human umbilical cord vein endothelial cells (HUVECs). This enhanced ICAM-1 expression in HUVECs was first observed at 2 h postligand treatment. Maximal expression appeared at 8 h postligand treatment, as detected by flow cytometry and Western blotting. Furthermore, the effects of S-1-P on ICAM-1 expression were shown to be concentration dependent. Prior treatment of HUVECs with pertussis toxin, a specific inhibitor of Gi, ammonium pyrrolidinedithiocarbamate and BAY 11–7082, inhibitors of the nuclear factor (NF)-B pathway, or Clostridium difficile toxin B, an inhibitor of Rac, prevented the enhanced effect of LPL-induced ICAM-1 expression. However, pretreatment of HUVECs with exoC3, an inhibitor of Rho, had no effect on S-1-P-enhanced ICAM-1 expression. In a static cell-cell adhesion assay system, pretreatment of LPL enhanced the adhesion between HUVECs and U-937 cells, a human mononucleated cell line. The enhanced adhesion effect could be prevented by preincubation with a functional blocking antibody against human ICAM-1. These results suggest that LPLs released by activated platelets might enhance interactions of leukocytes with the endothelium through a Gi-, NF-B-, and possibly Rac-dependent mechanism, thus facilitating wound healing and inflammation processes. lysophosphatidic acid; sphingosine 1-phosphate; inflammation; intercellular adhesion molecule-1; nuclear factor-B; human umbilical cord vein endothelial cells  相似文献   

17.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

18.
19.
The aim of the present study was to assess the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), monocytic adhesion of human aortic endothelial cells (HAECs), and the production of intracellular reactive oxygen species (ROS), when HAECs were stimulated by 7-ketocholesterol. 7-ketocholesterol enhances surface expression of ICAM-1 and VCAM-1 as determined by EIA, induces their mRNA expression by RT-PCR, and stimulates adhesiveness of HAECs to U937 monocytic cells. We confirmed up-regulation of ROS production of HAECs treated with 7-ketocholesterol. Although the surface expression of ICAM-1 and VCAM-1 on HAECs treated with 7-ketocholesterol increased in a time-dependent manner, alpha-tocopherol inhibited this increase of the surface expression of ICAM-1 and VCAM-1. In the monocytic adhesion assay, adhesion of U937 to HAECs treated with 7-ketocholesterol was enhanced, but monoclonal anti-ICAM-1 and VCAM-1 antibodies reduced the endothelial adhesiveness. In conclusion, this study suggests that the endothelial adhesiveness to monocytic cells that was increased by 7-ketocholesterol was associated with enhanced expression of ICAM-1 and VCAM-1 mediated by ROS production.  相似文献   

20.
Enterotoxigenic Bacteroides fragilis (ETBF) produces a ~ 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in mucosal inflammation. Although a variety of inflammatory cells is found at ETBF-infected sites, little is known about leukocyte adhesion in response to BFT stimulation. We investigated whether BFT affected the expression of ICAM-1 and monocytic adhesion to endothelial cells (ECs). Stimulation of HUVECs and rat aortic ECs with BFT resulted in the induction of ICAM-1 expression. Upregulation of ICAM-1 was dependent on the activation of IκB kinase (IKK) and NF-κB signaling. In contrast, suppression of AP-1 did not affect ICAM-1 expression in BFT-stimulated cells. Suppression of NF-κB activity in HUVECs significantly reduced monocytic adhesion, indicating that ICAM-1 expression is indispensable for BFT-induced adhesion of monocytes to the endothelium. Inhibition of JNK resulted in a significant attenuation of BFT-induced ICAM-1 expression in ECs. Moreover, inhibition of aldose reductase significantly reduced JNK-dependent IKK/NF-κB activation, ICAM-1 expression, and adhesion of monocytes to HUVECs. These results suggest that a signaling pathway involving aldose reductase, JNK, IKK, and NF-κB is required for ICAM-1 induction in ECs exposed to BFT, and may be involved in the leukocyte-adhesion cascade following infection with ETBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号