首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.  相似文献   

4.
Assembly and properties of chromatin containing histone H1   总被引:17,自引:0,他引:17  
The Xenopus oocyte supernatant (oocyte S-150) forms chromatin in a reaction that is affected by temperature and by the concentration of ATP and Mg. Under optimal conditions at 27 degrees C, relaxed DNA plasmids are efficiently assembled into supercoiled minichromosomes with the endogenous histones H3, H4, H2A and H2B. This assembly reaction is a gradual process that takes four to six hours for completion. Micrococcal nuclease digestions of the chromatin assembled under these conditions generate an extended series of DNA fragments that are, on average, multiples of 180 base-pairs. We have examined the effect of histone H1 in this system. Exogenous histone H1, when added at a molar ratio of H1 to nucleosome of 1:1 to 5:1, causes an increase in the micrococcal nuclease resistance of the chromatin without causing chromatin aggregation under these experimental conditions. Furthermore, the periodically arranged nucleosomes display longer internucleosome distances, and the average length of the nucleosome repeat is a function of the amount of histone H1 added, when this histone is present at the onset of the assembly process. In contrast, no major change in the length of the nucleosome repeat is observed when histone H1 is added at the end of the chromatin assembly process. Protein analyses of the purified minichromosomes show that histone H1 is incorporated in the chromatin that is assembled in the S-150 supplemented with histone H1. The amount of histone H1 bound to chromatin is a function of the total amount of histone H1 added. We define here the parameters that generate histone H1-containing chromatin with native nucleosome repeats from 160 to 220 base-pairs, and we discuss the implications of these studies.  相似文献   

5.
6.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

7.
We have studied the structure of tandemly repetitive alpha-satellite chromatin (alpha-chromatin) in African green monkey cells (CV-1 line), using restriction endonucleases and staphylococcal nuclease as probes. While more than 80% of the 172-base-pair (bp) alpha-DNA repeats have a HindIII site, less than 15% of the alpha-DNA repeats have an EcoRI site, and most of the latter alpha-repeats are highly clustered within the CV-1 genome. EcoRI and HindIII solubilize approximately 8% and 2% of the alpha-chromatin, respectively, under the conditions used. EcoRI is thus approximately 30 times more effective than HindIII in solubilizing alpha-chromatin, with relation to the respective cutting frequencies of HindIII and EcoRI on alpha-DNA. EcoRI and HindIII solubilize largely non-overlapping subsets of alpha-chromatin. The DNA size distributions of both EcoRI- and HindIII-solubilized alpha-chromatin particles peak at alpha-monomers. These DNA size distributions are established early in digestion and remain strikingly constant throughout the digestion with either EcoRI or HindIII. Approximately one in every four of both EcoRI- and HindIII-solubilized alpha-chromatin particles is an alpha-monomer. Two-dimensional (deoxyribonucleoprotein leads to DNA) electrophoretic analysis of the EcoRI-solubilized, sucrose gradient-fractionated alpha-oligonucleosomes shows that they do not contain "hidden" EcoRI cuts. Moreover, although the EcoRI-solubilized alpha-oligonucleosomes contain one EcoRI site in every 172-bp alpha-DNA repeat, they are completely resistant to redigestion with EcoRI. This striking difference between the EcoRI-accessible EcoRI sites flanking an EcoRI-solubilized alpha-oligonucleosome and completely EcoRI-resistant internal EcoRI sites in the same alpha-oligonucleosome indicates either that the flanking EcoRI sites occur within a modified chromatin structure or that an altered nucleosome arrangement in the vicinity of a flanking EcoRI site is responsible for its location in the nuclease-sensitive internucleosomal (linker) region. Analogous redigestions of the EcoRI-solubilized alpha-oligonucleosomes with either HindIII, MboII or HaeIII (both before and after selective removal of histone H1 by an exchange onto tRNA) produce a self-consistent pattern of restriction site accessibilities. Taken together, these data strongly suggest a preferred nucleosome arrangement within the EcoRI-solubilized subset of alpha-oligonucleosomes, with the centers of most of the nucleosomal cores being approximately 20 bp and approximately 50 bp away from the nearest EcoRI and HindIII sites, respectively, within the 172-bp alpha-DNA repeat. However, as noted above, the clearly preferred pattern of nucleosome arrangement within the EcoRI-solubilized alpha-oligonucleosomes is invariably violated at the ends of every such alpha-oligonucleosomal particle, suggesting at least a partially statistical origin of this apparently non-random nucleosome arrangement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
J V Kosmoski  M J Smerdon 《Biochemistry》1999,38(29):9485-9494
A strategy was developed to assemble nucleosomes specifically damaged at only one site and one structural orientation. The most prevalent UV photoproduct, a cis-syn cyclobutane thymine dimer (cs CTD), was chemically synthesized and incorporated into a 30 base oligonucleotide harboring the glucocorticoid hormone response element. This oligonucleotide was assembled into a 165 base pair double stranded DNA molecule with nucleosome positioning elements on each side of the cs CTD-containing insert. Proton NMR verified that the synthetic photoproduct is the cis-syn stereoisomer of the CTD. Moreover, two different pyrimidine dimer-specific endonucleases cut approximately 90% of the dsDNA molecules. This cleavage is completely reversed by photoreactivation with E. coli UV photolyase, further demonstrating the correct stereochemistry of the photoproduct. Nucleosomes were reconstituted by histone octamer exchange from chicken erythocyte core particles, and contained a unique translational and rotational setting of the insert on the histone surface. Hydroxyl radical footprinting demonstrates that the minor groove at the cs CTD is positioned away from the histone surface about 5 bases from the nucleosome dyad. Competitive gel-shift analysis indicates there is a small increase in histone binding energy required for the damaged fragment (DeltaDeltaG approximately 0.15 kcal/mol), which does not prevent complete nucleosome loading under our conditions. Finally, folding of the synthetic DNA into nucleosomes dramatically inhibits cleavage at the cs CTD by T4 endonuclease V and photoreversal by UV photolyase. Thus, specifically damaged nucleosomes can be experimentally designed for in vitro DNA repair studies.  相似文献   

10.
High speed supernatants of Xenopus laevis oocyte nuclei efficiently assemble DNA into nucleosomes in vitro under physiological salt conditions. The assembly activity cofractionates with two histone complexes composed of the acidic protein N1/N2 in complex with histones H3 and H4, and nucleoplasmin in complex with histones H2B and H2A. Both histone complexes have been purified and their nucleosome assembly activities have been analysed separately and in combination. While the histones from the N1/N2 complexes are efficiently transferred to DNA and induce supercoils into relaxed circular plasmid DNA, the nucleoplasmin complexes show no supercoil induction, but can also transfer their histones to DNA. In combination, the complexes act synergistically in supercoil induction thereby increasing the velocity and the number of supercoils induced. Electron microscopic analysis of the reaction products shows fully packaged nucleoprotein structures with the typical nucleosomal appearance resulting in a compaction ratio of 2.8 under low ionic strength conditions. The high mobility group protein HMG-1, which is also present in the soluble nuclear homogenate from X. laevis oocytes, is not required for nucleosome core assembly. Fractionation experiments show that the synergistic effect in the supercoiling reaction can be exerted by histones H3 and H4 bound to DNA and the nucleoplasmin complexes alone. This indicates that it is not the synchronous action of both complexes which is required for nucleosome assembly, but that their cooperative action can be resolved into two steps: deposition of H3 and H4 from the N1/N2 complexes onto the DNA and completion of nucleosome core formation by addition of H2B and H2A from the nucleoplasmin complexes.  相似文献   

11.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

12.
Nucleosomes are no longer considered only static basic units that package eukaryotic DNA but they emerge as dynamic players in all chromosomal processes. Regulatory proteins can gain access to recognition sequences hidden by the histone octamer through the action of ATP-dependent chromatin remodeling complexes that cause nucleosome sliding. In addition, it is known that nucleosomes are able to spontaneously reposition along the DNA due to intrinsic dynamic properties, but it is not clear yet to what extent sequence-dependent dynamic properties contribute to nucleosome repositioning. Here, we study mobility of nucleosomes formed on telomeric sequences as a function of temperature and ionic strength. We find that telomeric nucleosomes are highly intrinsically mobile under physiological conditions, whereas nucleosomes formed on an average DNA sequence mostly remain in the initial position. This indicates that DNA sequence affects not only the thermodynamic stability and the positioning of nucleosomes but also their dynamic properties. Moreover, our findings suggest that the high mobility of telomeric nucleosomes may be relevant to the dynamics of telomeric chromatin.  相似文献   

13.
Chromatin remodelers are ATP-dependent machines responsible for directionally shifting nucleosomes along DNA. We are interested in defining which elements of the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler are necessary and sufficient for sliding nucleosomes. This work focuses on the polypeptide segment that joins the ATPase motor to the C-terminal DNA-binding domain. We identify amino acid positions outside the ATPase motor that, when altered, dramatically reduce nucleosome sliding ability and yet have only ~3-fold reduction in ATPase stimulation by nucleosomes. These residues therefore appear to play a role in functionally coupling ATP hydrolysis to nucleosome sliding, and suggest that the ATPase motor requires cooperation with external elements to slide DNA past the histone core.  相似文献   

14.
15.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

16.
Isolated SV40 minichromosomes [1-3] were treated with different single-cut restriction endonucleases to probe the arrangement of nucleosomes in relation to the SV70 DNA sequence. While Eco RI and Bam HI each cut 22-27% of the SV40 minichromosomes under limit-digest conditions, Bgl I, which cuts SV40 DNA at or very near the origin of replication [4,5], cleaves 90-95% of the minichromosomes in a preparation. Similar results were obtained with minichromosomes which had been fixed with formaldehyde before endonuclease treatment. One possible interpretation of these findings is that the arrangement of nucleosomes in the compact SV40 minichromosomes is nonrandom at least with regard to sequences near the origin of DNA replication.  相似文献   

17.
Stability of nucleosomes in native and reconstituted chromatins.   总被引:35,自引:19,他引:16       下载免费PDF全文
The stability of nucleosomes of SV40 minichromosomes extracted from infected cells or reconstituted by association of SV40 DNA and the four histones H2A, H2B, H3 and H4 was studied as a function of the ionic strength. As a measure of the stability of the nucleosome, we followed the disappearance of the nucleosomes from the original chromatin and their appearance on a "competing" DNA. We show here that the DNA and the histone components of the nucleosomes do not apprecially dissociate below 800 mM NaCl. At 800 mM and above, the histone moiety of the nucleosomes can dissociate from the DNA and efficiently participate to the formation of nucleosomes on a "competing" DNA.  相似文献   

18.
Recently, we have found that the assembly of nucleosomes reconstituted on negatively supercoiled DNA is cooperative. In the present paper the role of DNA topology and of histone tails in nucleosome assembly was explored. Reconstituted minichromosomes on relaxed DNA at different histone/DNA ratios (R) were assayed by topological analysis and electron microscopy visualization. Both methods show a linear relationship between average nucleosome number (N) and R. This suggests that in the case of relaxed DNA, cooperative internucleosomal interactions are small or absent. The influence of histone tails in nucleosome assembly was studied on minichromosomes reconstituted with trypsinized histone octamer on negatively supercoiled DNA by topological analysis. The topoisomers distribution, after trypsinization, dramatically changes, indicating that nucleosome-nucleosome interactions are remarkably decreased. These results show that, in chromatin folding, in addition to the well known role of histone H1, the interactions between histone octamer tails and DNA are also of importance.  相似文献   

19.
Yang Z  Hayes JJ 《Biochemistry》2011,50(46):9973-9981
We previously reported that reconstituted nucleosomes undergo sequence-dependent translational repositioning upon removal of the core histone tail domains under physiological conditions, indicating that the tails influence the choice of position. We report here that removal of the core histone tail domains increases the exposure of the DNA backbone in nucleosomes to hydroxyl radicals, a nonbiased chemical cleavage reagent, indicative of an increase in the motility of the DNA on the histone surface. Moreover, we demonstrate that the divalent cations Mg(2+) and Ca(2+) can replace the role of the tail domains with regard to stabilization of histone-DNA interactions within the nucleosome core and restrict repositioning of nucleosomes upon tail removal. However, when nucleosomes were incubated with Mg(2+) after tail removal, the original distribution of translational positions was not re-established, indicating that divalent cations increase the energy barrier between translational positions rather than altering the free energy differences between positions. Interestingly, other divalent cations such as Zn(2+), Fe(2+), Co(2+), and Mn(2+) had little or no effect on the stability of histone-DNA interactions within tailless nucleosomes. These results support the idea that specific binding sites for Mg(2+) and Ca(2+) ions exist within the nucleosome and play a critical role in nucleosome stability that is partially redundant with the core histone tail domains.  相似文献   

20.
Dynamics of nucleosomes and spontaneous unwrapping of DNA are fundamental property of the chromatin enabling access to nucleosomal DNA for regulatory proteins. Probing of such dynamics of nucleosomes performed by single molecule techniques revealed a large scale dynamics of nucleosomes including their spontaneous unwrapping. Dissociation of nucleosomes at low concentrations is a complicating issue for studies with single molecule techniques. In this paper, we tested the ability of 3-[(3-Cholamidopropyl)dimethylammonio]-l-propanesulfonate (CHAPS) to prevent dissociation of nucleosomes. The study was performed with mononucleosome system assembled with human histones H2A, H2B, H3 and H4 on the DNA substrate containing sequence 601 that provides the sequencespecific assembly of nucleosomes. We used Atomic Force Microscopy (AFM) to directly identify nucleosomes and analyze their structure at the nanometer level. These studies showed that in the presence of CHAPS at millimolar concentrations, nucleosomes, even at sub-nanomolar concentrations, remain intact over days compared to a complete dissociation of the same nucleosome sample over 10 min in the absence of CHAPS. Importantly, CHAPS does not change the conformation of nucleosomes as confirmed by the AFM analysis. Moreover, 16 µM CHAPS stabilizes nucleosomes in over one hour incubation in the solution containing as low as 0.4 nM in nucleosomes. The stability of nucleosomes is slightly reduced at physiological conditions (150 mM NaCl), although the nucleosomes dissociate rapidly at 300 mM NaCl. The sequence specificity of the nucleosome in the presence of CHAPS decreased suggesting that the histone core translocates along the DNA substrate utilizing sliding mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号