首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV-irradiated SV40 minichromosomes have been shown to be a substrate for a purified DNA repair endonuclease. A UV-repair endonuclease activity was also found to be associated with the isolated SV40 minichromosomes themselves. It appeared to have similar properties to the enzymes described from other mammalian sources.  相似文献   

2.
The simian virus 40 (SV40) enhancer contains three 8-bp purine-pyrimidine alternating sequences which are known to adopt the left-handed Z-DNA conformation in vitro. In this paper, we have undertaken the determination of the DNA conformation adopted by these Z-motifs in the SV40 minichromosome. We have analyzed the presence of Z-DNA through the change in linkage which should accompany formation of this left-handed conformation. Our results indicate that, regardless of the precise moment of the viral lytic cycle at which minichromosomes are harvested and the condition of the transfected DNA, either relaxed or negatively supercoiled, none of the three Z motifs of the SV40 enhancer exist to a significant extent as Z-DNA in SV40 minichromosomes. The SV40 enhancer adopts predominantly a right-handed B-DNA conformation in vivo.  相似文献   

3.
We operationally define two forms of SV40 minichromosomes, a 75S-form, prepared at low salt concentration, referred to as native minichromosomes, and a 50S-form, obtained after treatment with 0.5M potassium acetate, the salt-treated minichromosomes. Both preparations of minichromosomes serve well as templates for replication in vitro. Their respective replication products are strikingly different: replicated native minichromosomes contain a densely packed array of the maximal number of nucleosomes whereas replicated salt-treated minichromosomes carry, on average, half of the maximal number. We conclude that in both cases parental nucleosomes are transferred to progeny DNA, and, in addition, that an assembly of new nucleosomes occurs during the replication of native minichromosomes. This is apparently due to the presence of a nucleosome assembly factor as a constituent of native minichromosomes that dissociates upon treatment with salt. We further show that preparations of minichromosomes usually contain significant amounts of copurifying hnRNP particles and SV40 virion precursor particles. However, these structures do not detectably affect the replication and the chromatin assembly reactions.  相似文献   

4.
The fate of parental nucleosomes during the replication of chromatin templates was studied using a modification of the cell-free SV40 DNA replication system. Plasmid DNA molecules containing the SV40 origin were assembled into chromatin with purified core histones and fractionated assembly factors derived from HeLa cells. When these templates were replicated in vitro, the resulting progeny retained a nucleosomal organization. To determine whether the nucleosomes associated with the progeny molecules resulted from displacement of parental histones during replication followed by reassembly, the replication reactions were performed in the presence of control templates. It was observed that the progeny genomes resulting from the replication of chromatin templates retained a nucleosomal structure, whereas the progeny of the control DNA molecules were not assembled into chromatin. Additional experiments, involving direct addition of histones to the replication reaction mixtures, confirmed that the control templates were not sequestered in some form which made them unavailable for nucleosome assembly. Thus, our data demonstrate that parental nucleosomes remain associated with the replicating molecules and are transferred to the progeny molecules without displacement into solution. We propose a simple model in which nucleosomes ahead of the fork are transferred intact to the newly synthesized daughter duplexes.  相似文献   

5.
Previously, we have shown that DNA in a small fraction (2-5%) of SV40 minichromosomes was torsionally strained and could be relaxed by treating minichromosomes with topoisomerase I. This fraction was enriched with endogeneous RNA polymerase II (Luchnik et al., 1982, EMBO J., 1, 1353). Here we show that one and the same fraction of SV40 minichromosomes is hypersensitive to DNAase I and is relaxable by topoisomerase I. Moreover, this fraction completely loses its hypersensitivity to DNAase I upon relaxation. The possibility that this fraction of minichromosomes can be represented by naked DNA is ruled out by the results of studying the kinetics of minichromosome digestion by DNAase I in comparison to digestion of pure SV40 DNA and by measuring the buoyant density of SV40 chromatin in equilibrium CsCl gradient. Our data obtained with SV40 minichromosomes may be relevant to the mechanism responsible for DNAase I hypersensitivity in the loops or domains of cellular chromatin.  相似文献   

6.
7.
8.
We previously constructed the cell-free nucleotide excision repair (NER) assay system with UV-irradiated SV40 minichromosomes to analyze the mechanism of NER reaction on chromatin DNA. Here we investigate the factor that acts especially on nucleosomal DNA during the damage excision reaction, and reconstitute the damage excision reaction on SV40 minichromosomes. NER-proficient HeLa whole cell extracts were fractionated, and the amounts of known NER factors involved in the column fractions were determined by immunoblot analyses. The column fractions were quantitatively and systematically replaced by highly purified NER factors. Finally, damage DNA excision reaction on SV40 minichromosomes was reconstituted with six highly purified NER factors, XPA, XPC-HR23B, XPF-ERCC1, XPG, RPA and TFIIH, as those essential for the reaction with naked DNA. Further analysis showed that the damages on chromosomal DNA were excised as the same efficiency as those on naked DNA for short incubation. At longer incubation time, however, the damage excision efficiency on nucleosomal DNA was decreased whereas naked DNA was still vigorously repaired. These observations suggest that although the six purified NER factors have a potential to eliminate the damage DNA from SV40 minichromosomes, the chromatin structure may still have some repressive effects on NER.  相似文献   

9.
10.
11.
The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.  相似文献   

12.
In our previous work we have shown by comparison of experimental and computational data that the positions of the histone octamers bound to the DNA molecule appear to be completely sequence-dependent. This provides a convenient and quick method for locating the nucleosomes along the DNA molecule, as soon as the nucleotide sequence is known. Using this computational approach, the complete nucleosomal map of the SV40 minichromosome has been constructed. The map consists of 25 nucleosomes, with their coordinates (centers) being specified with high accuracy. The map is found to be in remarkable agreement with available experimental data.  相似文献   

13.
Nucleotide sequence-directed mapping of the nucleosomes of SV40 chromatin   总被引:3,自引:0,他引:3  
In our previous work we have shown by comparison of experimental and computational data that the positions of the histone octamers bound to the DNA molecule appear to be completely sequence-dependent. This provides a convenient and quick method for locating the nucleosomes along the DNA molecule, as soon as the nucleotide sequence is known. Using this computational approach, the complete nucleosomal map of the SV40 minichromosome has been constructed. The map consists of 25 nucleosomes, with their coordinates (centers) being specified with high accuracy. The map is found to be in remarkable agreement with available experimental data.  相似文献   

14.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
17.
SV40 DNA replication   总被引:40,自引:0,他引:40  
  相似文献   

18.
19.
A J Varshavsky  O Sundin  M Bohn 《Cell》1979,16(2):453-466
Examination of DNA fragments produced from either formaldehyde-fixed or unfixed SV40 minichromosomes by multiple-cut restriction endonucleases has led to the following major results: Exhaustive digestion of unfixed minichromosomes with Hae III generated all ten major limit-digest DNA fragments as well as partial cleavage products. In striking contrast to this result, Hae III acted on formaldehyde-fixed minichromosomes to yield only one of the limit-digest fragments, F, which is located in the immediate vicinity of the origin of replication, spanning nucleotides 5169 and 250 on the DNA sequence map of Reddy et al. (1978). This 300 base pair (bp) fragment was released as naked DNA from formaldehyde-fixed, Hae III-digested minichromosomes following treatment either by pronase-SDS or by SDS alone. In the latter case, the remainder of the minichromosome retained its compact configuration as assayed by both sedimentational and electrophoretic methods. In minichromosomes, the F fragment is therefore not only accessible to Hae III at its ends, but is also neither formaldehyde cross-linked into any SDS-resistant nucleoprotein structure nor topologically "locked" within the compact minichromosomal particle. This same fragment was preferentially produced during the early stages of digestion of unfixed minichromosomes with Hae III, and its final yield in the exhaustive Hae III digest was significantly higher than that of other limit-digest fragments. Similar results were obtained upon digestion of either unfixed or formaldehyde-fixed minichromosomes with Alu I. In particular, of approximately twenty major limit-digest DNA fragments, only two fragments (F and P, encompassing nucleotides 5146 to 190, and 190 to 325, respectively) were produced by Alu I from the formaldehyde-fixed minichromosomes. All other restriction endonucleases tested (Mbo I, Mbo II, Hind III, Hin II+III and Hinf I), for which there are no closely spaced recognition sequences in the above mentioned regions of the SV40 genome, did not produce any significant amount of limit-digest DNA fragments from formaldehyde-fixed minichromosomes. These findings, taken together with our earlier data on the preferential exposure of the origin of replication in SV40 minichromosomes (Varshavsky, Sundin and Bohn, 1978), strongly suggest that a specific region of the "late" SV40 DNA approximately 400 bp long is uniquely exposed in the compact minichromosome. It is of interest that, in addition to the origin of replication, this region contains binding sites for T antigen (Tjian, 1977), specific tandem repeated sequences and apparently also the promoters for synthesis of late SV40 mRNAs (Fiers et al., 1978; Reddy et al., 1978).  相似文献   

20.
F Azorin  A Rich 《Cell》1985,41(2):365-374
Proteins dissociated from SV40 minichromosomes by increasing NaCl concentration were tested for their binding to Z-DNA [Br-poly(dG-dC)] and B-DNA [poly (dG-dC)]. Z-DNA binding proteins are largely released in 0.2 M NaCl whereas most B-DNA binding proteins are not released until 0.6 M NaCl. Incubation of SV40 minichromosomes with Z-DNA-Sephadex in low salt solution results in proteins with Z-DNA binding activity (PZ proteins). These proteins bind to negatively supercoiled DNAs containing left-handed Z-DNA but not to relaxed DNAs. They compete with anti-Z-DNA antibodies in binding to negatively supercoiled DNAs. The binding is tighter to negatively supercoiled SV40 DNA than to other plasmids, suggesting sequence-specific Z-DNA binding. PZ proteins binding to negatively supercoiled SV40 DNA interfere with cleavage at the Sph I sites, within the 72 bp repeat sequences of the viral control region, but not with cleavage at the Bgl I site, at the origin of replication. Removal of PZ proteins also exposes the Sph I sites in the SV40 minichromosomes while addition of PZ proteins makes the sites inaccessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号