首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that peak expiratory flow is determined by the wave-speed-limiting mechanism, we studied the time dependency of the trachea and its effects on flow limitation. For this purpose, we assessed the relationship between transmural pressure and cross-sectional area [the tube law (TL)] of six excised human tracheae under controlled conditions of static (no flow) and forced expiratory flow. We found that TLs of isolated human tracheae followed quite well the mathematical representation proposed by Shapiro (Shapiro AH. J Biomech Eng 99: 126-147, 1977) for elastic tubes. Furthermore, we found that the TL measured at the onset of forced expiratory flow was significantly stiffer than the static TL. As a result, the stiffer TL measured at the onset of forced expiratory flow predicted theoretical maximal expiratory flows far greater than those predicted by the more compliant static TL, which in all cases studied failed to explain peak expiratory flows measured at the onset of forced expiration. We conclude that the observed viscoelasticity of the tracheal walls can account for the measured differences between maximal and "supramaximal" expiratory flows seen at the onset of forced expiration.  相似文献   

2.
The site of greatest airway deformation in dog lungs was located during maximum expiratory flow by use of tantalum bronchography, fiberoptic bronchoscopy, and airway pressure measurements. A series of area vs. transmural pressure curves for each of these segments of the airway was produced after stepwise changes in transmural pressure. Measurements of area were made using cinephotography to elucidate the effect of time on airway compliance. The maximum flow rate was calculated using the t = 0.1 s compliance curve of the airway. An equation was derived so that maximum flow (V) could be calculated from the area (A) and transmural pressure (Ptm) of the flow-limiting segment. This equation, V = K-A square root of Ptm, implied that if V were constant then A must vary as Ptm-1/2. It was demonstrated that the area-transmural pressure curve of the flow-limiting segment showed this relationship between A and Ptm and that the flow calculated from this equation and the data from the A-Ptm curve gave flows identical to those measured during maximum expiration. The phenomena of effort-independent flow and negative effort dependence are also explained in terms of the area-transmural pressure curve of the flow-limiting segment.  相似文献   

3.
Using our transistor model of the lung during forced expiration (J. Appl. Physiol. 62: 2013-2025, 1987), we recently predicted that 1) axially arranged choke points can exist simultaneously during forced expiration with sufficient effort, and 2) overall maximal expiratory flow may be relatively insensitive to nonuniform airways obstruction because of flow interdependence between parallel upstream branches. We tested these hypotheses in excised central airways obtained from five canine lungs. Steady expiratory flow was induced by supplying constant upstream pressure (Pupstream = 0-16 cmH2O) to the bronchi of both lungs while lowering pressure at the tracheal airway opening (16 to -140 cmH2O). Intra-airway pressure profiles obtained during steady maximal expiratory flow disclosed a single choke point in the midtrachea when Pupstream was high (2-16 cmH2O). However, when Pupstream was low (0 cmH2O), two choke sites were evident: the tracheal site persisted, but another upstream choke point (main carina or both main bronchi) was added. Flow interdependence was studied by comparing maximal expiratory flow through each lung before and after introduction of a unilateral external resistance upstream of the bronchi of one lung. When this unilateral resistance was added, ipsilateral flow always fell, but changes in flow through the contralateral lung depended on the site of the most upstream choke. When a single choke existed in the trachea, addition of the external resistance increased contralateral flow by 38 +/- 28% (SD, P less than 0.003). In contrast, when the most upstream choke existed at the main carina or in the bronchi, addition of the external resistance had no effect on contralateral maximal expiratory flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Partial expiratory flow-volume (PEFV) curves in infants are generated by applying a compressive pressure over the chest wall with an inflatable jacket. This study addresses two issues: pressure transmission to and across the chest wall and whether flow limitation can be identified. Eleven infants sedated with chloral hydrate were studied. Pressure transmission to the chest wall, measured with neonatal blood pressure cuffs placed on the infant's body surface, was 72 +/- 4% of jacket pressure during compression maneuvers. The pressure transmission to the air spaces, determined by measuring airway pressure during a compression maneuver against an occluded airway, was 56 +/- 6% of jacket pressure. A significant amount of the applied pressure is therefore lost across both the jacket and chest wall. Rapid pressure oscillations (RPO) were superimposed on static jacket pressures while expiratory flow was measured. Absence of associated oscillations of flow measured at the mouth was taken to indicate that flow was independent of driving pressure and therefore limited. Flow limitation was demonstrable with the RPO technique in all infants for jacket pressures greater than 50 cmH2O; however, it was evident at jacket pressures less than 30 cmH2O jacket pressure in four infants with obstructive airway disease. The RPO technique is a useful adjunct to the compression maneuver utilized to generate PEFV curves in infants because it facilitates the recognition of expiratory flow limitation.  相似文献   

5.
To investigate the determinants of maximal expiratory flow (MEF) with aging, 17 younger (7 men and 10 women, 39 +/- 4 yr, mean +/- SD) and 19 older (11 men and 8 women, 69 +/- 3 yr) subjects with normal pulmonary function were studied. For further comparison, we also studied 10 middle-aged men with normal lung function (54 +/- 6 yr) and 15 middle-aged men (54 +/- 7 yr) with mild chronic airflow limitation (CAL; i.e., forced expiratory volume in 1 s/forced vital capacity = 63 +/- 8%). MEF, static lung elastic recoil pressure (Pst), and the minimal pressure for maximal flow (Pcrit) were determined in a pressure-compensated, volume-displacement body plethysmograph. Values were compared at 60, 70, and 80% of total lung capacity. In the older subjects, decreases in MEF (P < 0.01) and Pcrit (P < 0.05), compared with the younger subjects, were explained mainly by loss of Pst (P < 0.05). In the CAL subjects, MEF and Pcrit were lower (P < 0.05) than in the older subjects, but Pst was similar. Thus decreases in MEF and Pcrit were greater than could be explained by the loss of Pst and appeared to be related to increased upstream resistance. These data indicate that the loss of lung recoil explains the decrease in MEF with aging subjects, but not in the mild CAL patients that we studied.  相似文献   

6.
To study the mechanism of generation of respiratory wheezes we examined the relationships between forced expiratory wheezes (FEW) and flow limitation in the lung. Tracheal lung sounds were measured in six healthy subjects during forced expiration through a flow-limiting valve in series with a high-impedance suction pump. Mouth pressure, esophageal pressure, transpulmonary pressure (Ptp), flow (V), and volume were also measured. For any flow rate, V was constant until the subject became flow limited. The onset of flow limitation was documented by a small change in V and a sudden change in Ptp, which was previously found by Olafsson and Hyatt to correspond to the beginning of the flow plateau of the isovolume pressure-flow curve (J. Clin. Invest. 48: 564-573, 1969). FEW started 107 +/- 45 ml (SD) after the onset of flow limitation. Additional 79 +/- 65 ml were exhaled between the onset of FEW to the final sharp drop in V. The frequency spectra of FEW were the same as those of respiratory wheezes found in obstructive airway diseases. Administration of inhaled bronchodilator (isoproterenol) did not eliminate the FEW, nor did it change their relationship to flow limitation. The sequence of events around the onset of FEW, and the tight correlation with the onset of flow limitation correspond well to recent experimental observations on the onset of flutter in collapsible, thick-walled latex tubes.  相似文献   

7.
Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK) structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constriction in isolated intact airways during 90 minutes of static transmural pressure (Ptm) of 7.5 cmH2O or dynamic variations between Ptm of 5 and 10 cmH20 mimicking breathing. Integrin and focal adhesion kinase activity increased during Ptm oscillations which was further amplified during constriction. While Ptm oscillations reduced β-actin and F-actin formation implying lower CSK stiffness, it did not affect tubulin. However, constriction was amplified when the microtubule structure was disassembled. Without constriction, α-smooth muscle actin (ASMA) level was higher and smooth muscle myosin heavy chain 2 was lower during Ptm oscillations. Alternatively, during constriction, overall molecular motor activity was enhanced by Ptm oscillations, but ASMA level became lower. Thus, ASMA and motor protein levels change in opposite directions due to stretch and contraction maintaining similar airway constriction levels during static and dynamic Ptm. We conclude that physiological Ptm variations affect cellular processes in intact airways with constriction determined by the balance among contractile and CSK molecules and structure.  相似文献   

8.
Studies in intact dogs have suggested that aerosol deposition is enhanced in the proximity of a flow-limiting segment (FLS) formed during cough. The mechanism for that observation was investigated using a monodisperse (geometric SD less than or equal to 1.15) fluorescent aerosol produced in a condensation generator. The aerosol was passed through a compliant tube (Penrose) that had been mounted vertically in a two-chamber box. The surrounding pressure (Ps) in the upstream chamber was controlled independent of the surrounding pressure in the downstream chamber, thus allowing development of an FLS near the exit of the upstream chamber. At fixed inlet pressure (P1) and Ps, flow limitation was achieved over a range of 0.1-0.5 l X s-1 by lowering downstream pressure alone (P2). The influence of the FLS cross-sectional geometry on the site of peak deposition was examined because area of an FLS is a function of transmural pressure (Ptm = Px - Ps). For those constriction geometries that did not involve opposing wall contact, the deposition distribution was characterized by a single peak immediately downstream of the constriction. In the most compressed geometries the peak in deposition was diminished and shifted further downstream. Total aerosol deposition was found to be characterized by a dimensionless particle inertia parameter formed as the ratio of particle stopping distance and the minor radius of the elliptical tube cross section. The deposition of small particles with an inertial parameter less than 0.01 was found to be independent of geometry and constriction velocity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To study the phenomenon of lung hyperinflation (LHI), i.e., an increase in lung volume without a concomitant rise in airway pressure, we measured lung volume changes in isolated dog lungs during high-frequency oscillation (HFO) with air, He, and SF6 and with mean tracheal pressure controlled at 2.5, 5.0, and 7.5 cmH2O. The tidal volume and frequency used were 1.5 ml/kg body wt and 20 Hz, respectively. LHI was observed during HFO in all cases except for a few trials with He. The degree of LHI was inversely related to mean tracheal pressure and varied directly with gas density. Maximum expiratory flow rate (Vmax) was measured during forced expiration induced by a vacuum source (-150 cmH2O) at the trachea. Vmax was consistently higher than the peak oscillatory flow rate (Vosc) during HFO, demonstrating that overall expiratory flow limitation did not cause LHI in isolated dog lungs. Asymmetry of inspiratory and expiratory impedances seems to be one cause of LHI, although other factors are involved.  相似文献   

10.
Flow limitation during forced expiration is simulated by a mathematical model. This model draws on the pressure-area law obtained in the accompanying paper, and the methods of analysis for one-dimensional flow in collapsible tubes developed by Shapiro (Trans. ASME J. Biomech. Eng. 99: 126-147, 1977). These methods represent an improvement over previous models in that 1) the effects of changing lung volume and of parenchymal-bronchial interdependence are simulated; 2) a more realistic representation of collapsed airways is employed; 3) a solution is obtained mouthward of the flow-limiting site by allowing for a smooth transition from sub- to supercritical flow speeds, then matching mouth pressure by imposing an elastic jump (an abrupt transition from super- to subcritical flow speeds) at the appropriate location; and 4) the effects of levels of effort (or vacuum pressure) in excess of those required to produce incipient flow limitation are examined, including the effects of potential physiological limitation.  相似文献   

11.
Effect of compression pressure on forced expiratory flow in infants   总被引:3,自引:0,他引:3  
The effect of the force of compression on expiratory flow was evaluated in 19 infants (2-13 mo of age) with respiratory illnesses of varying severity. An inflatable cuff was used to compress the chest and abdomen. Expiratory flow and volume, airway occlusion pressure, cuff pressure (Pc), and functional residual capacity were measured. Transmission of pressure from cuff to pleural space was assessed by a noninvasive occlusion technique. Close correlations (P less than 0.001) were found between Pc and the change in pleural pressure with cuff inflation (delta Ppl,c). Pressure transmission was found to vary between two cuffs of different design and between infants. Several forced expirations were then performed on each infant at various levels of delta Ppl,c. Infants with low maximal expiratory flows at low lung volumes required relatively gentle compression to achieve flow limitation and showed decreased flow for firmer compressions. Flow-volume curves in each infant tended to become more concave as delta Ppl,c increased. These findings underline the importance of knowledge of delta Ppl,c in interpreting expiratory flow-volume curves in infants.  相似文献   

12.
During forced vital capacity maneuvers in subjects with expiratory flow limitation, lung volume decreases during expiration both by air flowing out of the lung (i.e., exhaled volume) and by compression of gas within the thorax. As a result, a flow-volume loop generated by using exhaled volume is not representative of the actual flow-volume relationship. We present a novel method to take into account the effects of gas compression on flow and volume in the first second of a forced expiratory maneuver (FEV(1)). In addition to oral and esophageal pressures, we measured flow and volume simultaneously using a volume-displacement plethysmograph and a pneumotachograph in normal subjects and patients with expiratory flow limitation. Expiratory flow vs. plethysmograph volume signals was used to generate a flow-volume loop. Specialized software was developed to estimate FEV(1) corrected for gas compression (NFEV(1)). We measured reproducibility of NFEV(1) in repeated maneuvers within the same session and over a 6-mo interval in patients with chronic obstructive pulmonary disease. Our results demonstrate that NFEV(1) significantly correlated with FEV(1), peak expiratory flow, lung expiratory resistance, and total lung capacity. During intrasession, maneuvers with the highest and lowest FEV(1) showed significant statistical difference in mean FEV(1) (P < 0.005), whereas NFEV(1) from the same maneuvers were not significantly different from each other (P > 0.05). Furthermore, variability of NFEV(1) measurements over 6 mo was <5%. We concluded that our method reliably measures the effect of gas compression on expiratory flow.  相似文献   

13.
Mucus transport by two-phase gas-liquid flow mechanism was investigated with in vitro flow models under asymmetric periodic airflow conditions with nine different liquid solutions with rheological properties similar to human sputum. The flow model was made with 1.0-cm-ID glass tube and positioned either vertically or horizontally. With a constant supply of the test liquids into the model tube (0.5 ml/min), the liquid layer transport speed (LLTS) as well as the mean liquid layer thickness at steady-state condition (hs) was measured in conjunction with various airflow patterns of different expiratory and inspiratory flow rate, breathing frequency (f), and tidal volume (VT). The flow patterns were maintained within the range of normal breathing. In the horizontal tube model, LLTS ranged from 1.14 +/- 0.02 to 3.39 +/- 0.04 cm/min at the peak expiratory flow rate (VEp) of 30-60 l/min. The inspiratory flow rate, as well as f and VT did not affect LLTS. However, LLTS increased with increasing VEp, and at the same VEp LLTS was higher with viscoelastic than with viscous liquid. In the vertical tube model, the upward transport of mucus could not be achieved at VEp lower than 30 l/min particularly with low viscosity and low elasticity fluid. However, at high values of VEp, LLTS was comparable to that in the horizontal tube model with viscoelastic fluid, whereas LLTS of viscous liquid showed 26-40% lower than that in the horizontal tube model. The value of hs was 5-20% of the tube diameter at VEp of 30-60 l/min in both models. These results indicate that effective mucus clearance can be achieved by two-phase gas-liquid flow mechanism in patients with excessive bronchial secretions with biased tidal breathing favoring the expiratory flow and that the clearance can be further promoted by changing rheological properties of mucus.  相似文献   

14.
A computational model is presented for unsteady flow through a collapsible tube with variable wall stiffness. The one-dimensional flow equations are solved for inlet, outlet and external conditions that vary with time and for a tube with time-dependent, spatially-distributed local properties. In particular, the effects of nonuniformities and local perturbations in stiffness distribution in the tube are studied. By allowing the flow to evolve in time, asymptotically steady flows are calculated. When simulating a quasi-steady reduction in downstream pressure, the model demonstrates critical transitions, the phenomena of wave-speed limitation and the sites of flow limitation. It also exhibits conditions for which viscous flow limitation occurs. Computations of rapid, unsteady changes of the exit pressure illustrate the phenomena occurring at the onset of a cough, and the generation and propagation of elastic jumps.  相似文献   

15.
A numerical investigation of pulmonary flow properties was carried out in a monoalveolar model composed of a balloon and a compliant tube in series, subjected to pressure ramps. The flow is shown to become quickly limited by a wave-speed mechanism, occurring at the peak flow. The critical point then travels upstream, while the main part of the exit flow rate is provided by the tube collapse. After the critical flow period, the flow becomes subcritical and viscous effects are predominant in the deeply collapsed tube.  相似文献   

16.
Regional expiratory flow limitation studied with Technegas in asthma.   总被引:1,自引:0,他引:1  
Regional expiratory flow limitation (EFL) may occur during tidal breathing without being detected by measurements of flow at the mouth. We tested this hypothesis by using Technegas to reveal sites of EFL. A first study (study 1) was undertaken to determine whether deposition of Technegas during tidal breathing reveals the occurrence of regional EFL in induced bronchoconstriction. Time-activity curves of Technegas inhaled during 12 tidal breaths were measured in four asthmatic subjects at control conditions and after exposure to inhaled methacholine at a dose sufficient to abolish expiratory flow reserve near functional residual capacity. A second study (study 2) was conducted in seven asthmatic subjects at control and after three increasing doses of methacholine to compare the pattern of Technegas deposition in the lung with the occurrence of EFL. The latter was assessed at the mouth by comparing tidal with forced expiratory flow or with the flow generated on application of a negative pressure. Study 1 documented enhanced and spotty deposition of Technegas in the central lung regions with increasing radioactivity during tidal expiration. This is consistent with increased impaction of Technegas on the airway wall downstream from the flow-limiting segment. Study 2 showed that both methods based on analysis of flow at the mouth failed to detect EFL at the time spotty deposition of Technegas occurred. We conclude that regional EFL occurs asynchronously across the lung and that methods based on mouth flow measurements are insensitive to it.  相似文献   

17.
The use of an arterial prosthesis with a tapered lumen has several important advantages; for example, improved stability of flow, increased wall shear and better matching of its size with that of the host vessel. Tapering may, however, lead to increased energy losses, particularly if the angle of taper is large and the flow is high. This study is concerned with the determination of pressure drop for steady and laminar converging flow through rigid wall models of tapered arterial grafts. The angles of taper examined ranged from 0.5° to 1.0°. Aqueous solutions of polyacrylamide, with non-Newtonian viscous properties similar to those of blood, were used. The pressure drops across the tapered tubes were measured and the data were measured and the data were related to the pressure loss in cylindrical tubes of equivalent dimensions. Expressions for the ratio of the pressure drop in a tapered tube to that in a cylindrical tube for steady flow of a power law fluid were derived; there was good agreement between the predicted and the measured pressure drop ratios over a wide range of flows. The results of this study may be applied to the design of tapered arterial grafts. The pressure losses to be expected in tapered bypass grafts having various dimensions can easily be computed.  相似文献   

18.
In older children and adults, density dependence (DD) of forced expiratory flow is present over the majority of the full flow-volume curve. In healthy subjects, DD occurs because the pressure drop from peripheral to central airways is primarily dependent on turbulence and convective acceleration rather than laminar resistance; however, an increase in peripheral resistance reduces DD. We measured DD of forced expiratory flow in 22 healthy infants to evaluate whether infants have low DD. Full forced expiratory maneuvers were obtained while the subjects breathed room air and then a mixture of 80% helium-20% oxygen. Flows at 50 and 75% of expired forced vital capacity (FVC) were measured, and the ratio of helium-oxygen to air flow was calculated (DD at 50 and 75% FVC). The mean (range) of DD at 50 and 75% FVC was 1.37 (1.22-1.54) and 1.23 (1.02-1.65), respectively, values similar to those reported in older children and adults. There were no significant relationships between DD and age. Our results suggest that infants, compared with older children and adults, have similar DD, a finding that suggests that infants do not have a greater ratio of peripheral-to-central airway resistance.  相似文献   

19.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

20.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号