首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TCA循环中间产物对酿酒酵母胞内代谢关键酶活性的影响   总被引:1,自引:0,他引:1  
对酿酒酵母在添加苹果酸、柠檬酸和琥珀酸的混合培养基与其在YEPD培养基中胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活力差异进行了对比分析。结果表明:添加苹果酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.82%、57.23%、39.15%、12.10%;添加柠檬酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶的酶活分别下降50.17%、42.20%、48.40%;添加琥珀酸使胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.16%、34.16%、50.87%、50.87%、12.37%。丙酮酸激酶、异柠檬酸脱氢酶和苹果酸脱氢酶对3种有机酸的耐受性较差,葡萄糖-6-磷酸脱氢酶、乙醇脱氢酶对3种有机酸的耐受具有选择性。  相似文献   

2.
Procedures were developed for the optimal solubilization of D-lactate dehydrogenase, D-mandelate dehydrogenase, L-lactate dehydrogenase and L-mandelate dehydrogenase from wall + membrane fractions of Acinetobacter calcoaceticus. D-Lactate dehydrogenase and D-mandelate dehydrogenase were co-eluted on gel filtration, as were L-lactate dehydrogenase and L-mandelate dehydrogenase. All four enzymes could be separated by ion-exchange chromatography. D-Lactate dehydrogenase and D-mandelate dehydrogenase were purified by cholate extraction, (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and chromatofocusing. The properties of D-lactate dehydrogenase and D-mandelate dehydrogenase were similar in several respects: they had relative molecular masses of 62 800 and 59 700 respectively, pI values of 5.8 and 5.5, considerable sensitivity to p-chloromercuribenzoate, little or no inhibition by chelating agents, and similar responses to pH. Both enzymes appeared to contain non-covalently bound FAD as cofactor.  相似文献   

3.
The segmentation of the proximal tubules in the kidney of the female rat was studied by means of enzyme histochemical reactions and the results compared with those observed in male and recently described by Jacobsen and J0rgensen (1973 a). Reactions were performed for the following soluble, coezyme-dependent oxido-reductases: glucose 6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase, NAD-as well as NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase. Measures were taken to reduce enzyme diffusion and eliminate interference from tissue tetrazolium reductases. Furthermore, reactions were performed for a number of less soluble or insoluble enzymes: glucose 6-phosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases. In the proximal tubules of the female rat all enzymes studied--except beta-hydroxybutyrate dehydrogenase--showed segmental differences, most of them clearly revealing three segments. Sex differences were found concerning all enzymes except uridine diphosphate glucose dehydrogenase and NADP-dependent isocitrate dehydrogenase. The most pronounced sex-related differences were seen in the third segment in which part the male rat showed highest activity in respect to tetrazolium reductases, NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase and glucose 6-phosphate dehydrogenase and the female in respect to glucose 6-phosphatase, alpha-glycerophosphate dehydrogenases, and NADP-dependent, decarboxylating malate dehydrogenase. A few of the enzymes exhibited minor sex differences in the first two segments.  相似文献   

4.
Complex I binds several mitochondrial NAD-coupled dehydrogenases   总被引:5,自引:0,他引:5  
NADH:ubiquinone reductase (complex I) of the mitochondrial inner membrane respiratory chain binds a number of mitochondrial matrix NAD-linked dehydrogenases. These include pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, mitochondrial malate dehydrogenase, and beta-hydroxyacyl-CoA dehydrogenase. No binding was detected between complex I and cytosolic malate dehydrogenase, glutamate dehydrogenase, NAD-isocitrate dehydrogenase, lipoamide dehydrogenase, citrate synthase, or fumarase. The dehydrogenases that bound to complex I did not bind to a preparation of complex II and III, nor did they bind to liposomes. The binding of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and mitochondrial malate dehydrogenase to complex I is a saturable process. Based upon the amount of binding observed in these in vitro studies, there is enough inner membrane present in the mitochondria to bind the dehydrogenases in the matrix space. The possible metabolic significance of these interactions is discussed.  相似文献   

5.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

6.
Binding of 8-anilinonaphthalene sulfonate (ANS) to glutamate dehydrogenase results in enzyme inhibition and a marked increase in the fluorescence of ANS. Perphenazine and GTP increase the fluorescence of ANS-glutamate dehydrogenase secondary to their known ability to alter the conformation of this enzyme. Aspartate aminotransferases, which form enzyme-enzyme complexes with glutamate dehydrogenase, produce a slight decrease in the fluorescence of ANS-glutamate dehydrogenase.While ANS and perphenazine are allosteric inhibitors of reactions catalyzed by free glutamate dehydrogenase, they do not inhibit reactions catalyzed by aminotransferaseglutamate dehydrogenase complexes. This is in spite of the fact that the aminotransferase does not prevent either ANS or perphenazine from being bound to glutamate dehydrogenase. Therefore, reactions catalyzed by the enzyme-enzyme complex are apparently not inhibited by ANS or perphenazine because binding of the aminotransferase to glutamate dehydrogenase prevents these ligands from altering the conformation of glutamate dehydrogenase. This is consistent with the fact that the aminotransferase also prevents perphenazine from enhancing the fluorescence of ANS-glutamate dehydrogenase.Reactions catalyzed by the enzyme-enzyme complex are inhibited by GTP and the aminotransferase does not prevent GTP from enhancing the fluorescence of ANS-glutamate dehydrogenase. Therefore, binding of the aminotransferase to glutamate dehydrogenase does not prevent GTP from altering the conformation of glutamate dehydrogenase.The fact that the aminotransferase completely prevents perphenazine from increasing the fluorescence of ANS-glutamate dehydrogenase suggests that in the enzymeenzyme complex each glutamate dehydrogenase polypeptide chain can be bound to an aminotransferase polypeptide chain. This would mean that three aminotransferase molecules can be bound to each monomeric unit (Mr 3 × 105) of glutamate dehydrogenase.  相似文献   

7.
Pyrene maleimide is shown to be a 'half of the sites' reagent for glutamate dehydrogenase and for glyceraldehyde-3-phosphate dehydrogenase. The modified residues are identified as cysteine-115 for glutamate dehydrogenase and cysteine-149 for glyceraldehyde-3-phosphate dehydrogenase. The two enzymes react differently with pyrene maleimide. Whereas the hydrophobic environment of cysteine-115 directs the modification of glutamate dehydrogenase, the high reactivity of cysteine-149 determines the specific modification of glyceraldehyde-3-phosphate dehydrogenase. Glutamate dehydrogenase activity is unaltered by the modification: glyceraldehyde-3-phosphate dehydrogenase activity in inhibited.  相似文献   

8.
甘蓝型油菜子油分的积累与某些生理变化关系的研究   总被引:14,自引:0,他引:14  
油菜种子发育过程中,其内部的生理代谢过程发生了规律性的变化。伴随着种子的发育进程,6-磷酸葡萄糖脱氢酶、异柠檬酸裂解酶、异柠檬酸脱氢酶和琥珀酸脱氢酶的活性均有不同程度的增强。在油分旺盛合成期,6-磷酸葡萄糖脱氢酶和异柠檬酸裂解酶的活性均达到了最大值,而此时,异柠檬酸脱氢酶和琥珀酸脱氢酶的活属于匀增加较慢;在种子的不同发育时期,高含油量品系的6-磷酸葡萄糖脱氢酶和异柠檬酸裂解酶的活性均高于低含油量的  相似文献   

9.
The levels of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, and cyclic phosphodiesterase activities were examined in growing and starving plasmodia of Physarum polycephalum. The activities of lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase decreased whereas that of cyclic phosphodiesterase increased. The change in activity of lactate dehydrogenase was the result of the variation of the activity of a single enzyme quite similar to the lactate dehydrogenases of higher animals.  相似文献   

10.
1. Glutamate dehydrogenase and malate dehydrogenase solubilized from liver microsomes were able to rebind to microsomal vesicles while the corresponding dehydrogenases extracted from mitochondria showed no affinity for microsomes. 2. Competition was noticed between microsomal glutamate dehydrogenase and microsomal malate dehydrogenase in the binding to microsomal membranes. Mitochondrial malate dehydrogenase or bovine serum albumin did not inhibit the binding of microsomal glutamate dehydrogenase to microsomes. 3. Binding of microsomal glutamate dehydrogenase to microsomal membranes decreased when microsomes was preincubated with trypsin. 4. Rough microsomal glutamate dehydrogenase was more efficiently bound to rough microsomes than smooth microsomes. Conversely, smooth microsomal glutamate dehydrogenase had higher affinity for smooth microsomes than for rough microsomes. 5. A difference was noticed among the glutamate dehydrogenase isolated from rough and smooth microsomes, and from mitochondria, which suggested the possibility of minor post-translational modification of enzyme molecules in the transport from the site of synthesis to mitochondria.  相似文献   

11.
Cerebral forebrain arterioles and neuropil were analyzed histochemically to determine the effects of chloral hydrate anesthesia on key enzymes of aerobic and anaerobic metabolism, as well as the hexose monophosphate shunt in rats. Significant decreases were observed in cytochrome oxidase, and beta-hydroxybutyrate dehydrogenase in arterioles, while glucose-6-phosphate dehydrogenase and isocitric dehydrogenase showed a significant increase and lactate dehydrogenase showed no significant change. In the neuropil, cytochrome oxidase, isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase showed significant increases following chloral hydrate administration, while beta-hydroxybutyrate dehydrogenase and lactate dehydrogenase showed no significant changes. These data suggest that surgical anesthetic levels of chloral hydrate can impair forebrain metabolism which may lead to altered electrophysiological responses.  相似文献   

12.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

13.
Lipoamide dehydrogenases from various sources were purified and their immunochemical properties were compared. Antibody against rat lipoamide dehydrogenase reacted with rat, human, pig, pigeon and frog enzymes, but not with enzymes from E. coli, yeast and Ascaris. Anti-Ascaris enzyme and anti-E. coli enzyme antibodies reacted with Ascaris and E. coli enzymes, respectively. The pyruvate dehydrogenase subcomplex, which consists of pyruvate dehydrogenase and lipoate acetyltransferase, was prepared by releasing the lipoamide dehydrogenase from rat heart pyruvate dehydrogenase complex by anti-lipoamide dehydrogenase antibody. Lipoamide dehydrogenases from various sources were added to rat pyruvate dehydrogenase subcomplex and the complex overall activity was measured. Each lipoamide dehydrogenase effectively recovered the overall activity of rat pyruvate dehydrogenase subcomplex to 80% of the original activity.  相似文献   

14.
Microelectrospray ionization-mass spectrometry was used to directly observe electron transferring flavoprotein.flavoprotein dehydrogenase interactions. When electron transferring flavoprotein and porcine dimethylglycine dehydrogenase or sarcosine dehydrogenase were incubated together in the absence of substrate, a relative molecular mass corresponding to the flavoprotein.electron transferring flavoprotein complex was observed, providing the first direct observation of these mammalian complexes. When an acyl-CoA dehydrogenase family member, human short chain acyl-CoA dehydrogenase, was incubated with dimethylglycine dehydrogenase and electron transferring flavoprotein, the microelectrospray ionization-mass spectrometry signal for the dimethylglycine dehydrogenase.electron transferring flavoprotein complex decreased, indicating that the acyl-CoA dehydrogenases have the ability to compete with the dimethylglycine dehydrogenase/sarcosine dehydrogenase family for access to electron transferring flavoprotein. Surface plasmon resonance solution competition experiments revealed affinity constants of 2.0 and 5.0 microm for the dimethylglycine dehydrogenase-electron transferring flavoprotein and short chain acyl-CoA dehydrogenase-electron transferring flavoprotein interactions, respectively, suggesting the same or closely overlapping binding motif(s) on electron transferring flavoprotein for dehydrogenase interaction.  相似文献   

15.
Kinetic and Sephadex gel filtration epxeriments indicate that in the presence of palmitoyl-CoA, glutamate dehydrogenase forms a complex with mitochondrial malate dehydrogenase. In this complex, palmitoyl-CoA is bound to glutamate dehydrogenase but is not bound to malate dehydrogenase. Consequently, palmitoyl-CoA inhibits glutamate dehydrogenase while glutamate dehydrogenase completely protects malate dehydrogenase activity against palmitoyl-CoA inhibition. In the absence of palmitoyl-CoA, interaction between these two enzymes is quite weak. However, if the two enzymes are incubated with the bifunctional crosslinker dimethyl 3,3′-dithiobispropionimidate and chromatographed on Sephadex G-200, about 46% of the malate dehydrogenase is eluted with glutamate dehydrogenase in the void volume. If glutamate dehydrogenase or crosslinker is omitted, then malate dehydrogenase is not found in the void volume or other early fractions from the column. This indicates that in the absence of palmitoyl-CoA the crosslinker prevents dissociation of the weak complex by forming a covalent bond between the two enzymes. Furthermore, if the two enzymes are incubated in polyethylene glycol, there is a marked increase in the amount of both enzymes precipitated.  相似文献   

16.
Characterization of aldehyde dehydrogenase from HTC rat hepatoma cells   总被引:1,自引:0,他引:1  
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring during hepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 100 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusion, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

17.
Oxidative decarboxylation of pyruvate by branched-chain 2-oxo acid dehydrogenase can result in overestimation of the expressed and total activity of hepatic pyruvate dehydrogenase. Pyruvate is a poor substrate for branched-chain 2-oxo acid dehydrogenase relative to the branched-chain oxo acids; however, the comparable total activities of the two complexes in liver, the much greater activity state of branched-chain 2-oxo acid dehydrogenase compared with pyruvate dehydrogenase in most physiological states, and the use of high pyruvate concentrations, explain the interference that can occur in conventional radiochemical or indicator-enzyme linked assays of pyruvate dehydrogenase. Goat antibody that specifically inhibited branched-chain 2-oxo acid dehydrogenase was used in this study to provide a more specific assay for pyruvate dehydrogenase.  相似文献   

18.
The topology of phosphogluconate dehydrogenases in rat liver microsomes   总被引:1,自引:0,他引:1  
Rat liver microsomes are known to contain a 6-phosphogluconate dehydrogenase which differs from the 6-phosphogluconate dehydrogenase in the soluble fraction. Microsomes which were washed once bind the soluble phosphogluconate dehydrogenase more tightly than they do glucose-6-phosphate dehydrogenase. Microsomes washed three times in 0.15 M Tris-HCl, pH 8.0, contain only the microsomal 6-phosphogluconate dehydrogenase. Two observations show that this dehydrogenase is located in the cisternae. First, this dehydrogenase is inactive in intact, three times washed microsomes. Second, proteolytic inactivation of 6-phosphogluconate dehydrogenase like that of the cisternal enzyme glucose-6-phosphatase requires disruption of the membrane. Under the conditions used, detergent did not affect the proteolytic inactivation of NADPH-cytochrome c reductase, an enzyme located on the external surface. The excellent correspondence between the activations of hexose phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in microsomes at various stages of disruption of the microsomal membrane produced by detergent supports the earlier contention that these two dehydrogenases are reducing NADP in the same region of the microsomes. A similar experiment which shows an exact correspondence between the activations of 6-phosphogluconate dehydrogenase and mannose-6-phosphatase with increasing concentrations of detergent indicates that the activation of the dehydrogenase can be explained solely by the penetration of the substrates to the active dehydrogenase within the microsomes and strongly suggests that the dehydrogenase is catalytically active in the cisternae.  相似文献   

19.
Summary Liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were significantly decreased in both diabetic and fasted rats. Treatment of diabetic rats with insulin resulted in liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities that were significantly greater than controls. Insulin promoted an increase in food consumption that was blocked by adrenaline. Insulin, when administered together with adrenaline, restored hepatic glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenas activities of diabetic animals to control values, without altering food consumption. Brain glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were not significantly altered by either dietary restriction, diabetes or insulin treatment. These results demonstrate a dissociation between the action of insulin on hepatic glucose 6-phosphate dehydrogenase activity and its action to increase food intake.Abbreviations NADP+ oxidoreductase, EC 1.1.1.49 Glucose 6-P dehydrogenase, GPD, D-glucose-6-phosphate - NADP+ 2-oxidoreductase (decarboxylating), EC 1.1.1.44 phosphogluconate dehydrogenase, PGD, 6-phospho-D-gluconate  相似文献   

20.
Recrystallized alcohol dehydrogenase from horse liver was found to oxidize 17-hydroxystearic acid into 17-oxostearic acid, the 17-L-enantiomer faster than the 17-D-enantiomer. Alone at high pH or in combination with aldehyde dehydrogenase, the alcohol dehydrogenase also catalyzed conversion of 18-hydroxystearic acid into 1, 18-octadecadioic acid and 5β-cholestane-3α,7α,12α,26-tetrol into 3α,7α,12α-trihydroxy-5β-cholestanoic acid. All the activities as well as the ethanol dehydrogenase activity disappeared after specific carboxymethylation of a single cystein residue at the active site of alcohol dehydrogenase. These results conclusively show that alcohol dehydrogenase itself has ω-hydroxyfatty acid dehydrogenase activity and ω-hydroxysteroid dehydrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号