首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inclusion of benzimidazole or cobalt in the growth medium causes considerably increases in the free cystine levels of wild type and a cell division mutant strain of Chlamydomonas reinhardi. Homocystine levels are reduced slightly. Since benzimidazole and cobalt also markedly affect the expression of the mutation, it is suggested as a tentative hypothesis that this may be achieved via the rise in free cystine. Cysteine in the growth medium does not increase the internal free cystine or the expression of the mutation in a similar way to benzimidazole or cobalt.  相似文献   

2.
Human diploid fibroblasts take up cystine in the culture medium and the cystine is immediately reduced to cysteine in the cells. It is found that cysteine thus formed is rapidly released from the cells into the medium and accumulates there. The system transporting cysteine is convincingly similar to the ASC system described by Christensen et al. (1967). Since cysteine in the medium is sensitive to autoxidation and readily changes back to cystine, the uptake of cystine seems crucial to the cells. Inhibitors of cystine uptake, such as glutamate and homocysteate, potently reduce the intracellular and extracellular levels of cysteine. These inhibitors modify the cell growth depending upon the cystine concentration is physiological. An excessive concentration of cystine is in itself inhibitory action is antagonized by glutamate or homocysteate.  相似文献   

3.
The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation inBacillus thuringiensis var.thuringiensis was studied. The effect was well pronounced when the cystine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or Zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, cisaconitate, oxalosuccinate, ∞ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.  相似文献   

4.
5.
The alpha-mannosidase from Canavalia ensiformis is devoid of cysteine and cystine. Nevertheless, its cleavage into subunits is facilitated by the presence of mercaptoethanol in the denaturing buffer.  相似文献   

6.
The effects of timing and duration of cytochalasin B (CB) treatment on the kinetics of the initiation of DNA synthesis in mono- and binucleate HeLa cells, synchronized in the G1 phase of the cell cycle by the reversal of a mitotic block (N2O at 80 PSI), were studied. In the control, bi-, tri- and tetranucleate cells entered S phase slightly earlier than the mononucleate cells at a rate proportional to the number of their nuclei. The difference between any two adjacent sub-populations was less than 0.5 h. However, the binucleate cells produced by a 90 min CB treatment immediately after the reversal of the mitotic block exhibited a considerably shorter G1 period as compared to mononucleate cells (a difference of 1.5 h). This exaggerated difference in the duration of G1 period between mono- and binucleate cells disappeared when the CB treatment was delayed by 75 or 90 min indicating that it was an experimental artifact. From this study, we conclude that there is naturally some degree of nuclear cooperation in the multinucleate systems, particularly with regard to the initiation of DNA synthesis, which is not influenced by CB treatment.  相似文献   

7.
The frequency of micronucleated cells in isolated 72-h human lymphocyte cultures treated with cytochalasin B (Cyt-B; 1.5-6 micrograms/ml for the last 28 h) was 9-21 times higher (mean 14.6 times) among multinucleate than binucleate cells. At 3 micrograms/ml, the concentration of Cyt-B originally recommended for the human lymphocyte micronucleus assay, the frequency of micronucleated multinucleate cells was 8.5%, while 0.7% of the binucleate cells had a micronucleus. Although no dose-dependent induction of micronuclei could be observed for either of the cell types, increase in the concentration of Cyt-B was associated with a decrease in the ratio of multinucleate to binucleate cells. Treatment with Cyt-B (1.5-12 micrograms/ml) increased the frequency of anaphase cells with aberrations, especially lagging chromatids. This finding was explained by a dose-dependent increase in multipolar (greater than or equal to 3 poles) divisions which had a high frequency of anaphase aberrations (39-53%), irrespective of the concentration of Cyt-B. Bipolar anaphases did not show a significant increase in aberrant cells, although a suggestive dependence on the concentration of Cyt-B was observed. The findings indicate that the high frequency of micronuclei in multinucleate lymphocytes produced by Cyt-B is due to mitotic errors arising when bi- (and multi-) nuclear cells divide. To avoid possible artifactually high micronucleus frequencies due to inclusion of cells that have divided greater than or equal to 2 times in the presence of Cyt-B, it is recommended that, in the human lymphocyte micronucleus assay using the cytokinesis-block method, the cell culture time is reduced to minimize the frequency of such cells and that only good preparations and regularly shaped binucleates are included in the analysis.  相似文献   

8.
Sulphoxidation occurs in protamines that are enriched in cysteine and supplies chromatin for packaging. The extracellular fluid contains higher levels of oxidised cysteine (cystine), and some cells utilise system xc?, a cystine transporter in which xCT is the main protein component, to fulfil the need for cysteine. We hypothesised that system xc? might ensure the supply of cysteine needed for spermatogenesis. The reproductive ability of xCT?/? male mice at 6- to 18-weeks of age appeared to be lower than xCT+/+ male mice. The courtship behaviour of the xCT?/? male mice was undynamic, which appeared to be associated with the low reproductive ability of xCT?/? male mice. xCT was found to be expressed in mouse testes, notably in Sertoli cells, as well as in the epididymis and the levels were increased at the time of sexual maturation. Despite the normal histological appearance of testicular tissues, the cauda epididymis of xCT?/? mice contained round, greater numbers of immature spermatogenic cells than that of xCT+/+ mice. However, there were no significant differences in the numbers of sperm stored in the cauda epididymis or in the concentrations of cysteine or glutathione in the testes. The resulting sperm had normal fertilising ability. Thus, system xc? appears to function as a backup system for supplying cysteine to testes and play a pivotal role in supplying cysteine for normal sexual behaviour by a mechanism that is different from that for the supply of cysteine in spermatogenesis.  相似文献   

9.
Conrad M  Sato H 《Amino acids》2012,42(1):231-246
The oxidative stress-inducible cystine/glutamate exchange system, system xc, transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system xc has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system xc may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system xc research up to now.  相似文献   

10.
11.
Phosphorous 31 nuclear magnetic resonance spectroscopy has been employed to observe changes in axial ligation in hydroxycobalamin solutions. The naturally occurring phosphorous nucleus in the benzimidazole side “arm” of the corrin is shown to exhibit different chemical shifts depending upon whether the benzimidazole is coordinated to the cobalt (III) ion or whether it has been displaced. The phosphorous resonance's linewidth at half maximum peak height seems also to be an indicator of the cobalt oxidation state, exhibiting a twenty fold larger width in the coblt (II) complex. The implications of these findings for future studies on certain coenzyme B12 dependent enzymes is discussed.  相似文献   

12.
McBean GJ 《Amino acids》2012,42(1):199-205
Astrocyte cells require cysteine as a substrate for glutamate cysteine ligase (γ-glutamylcysteine synthase; EC 6.3.2.2) catalyst of the rate-limiting step of the γ-glutamylcycle leading to formation of glutathione (l-γ-glutamyl-l-cysteinyl-glycine; GSH). In both astrocytes and glioblastoma/astrocytoma cells, the majority of cysteine originates from reduction of cystine imported by the xc cystine-glutamate exchanger. However, the transsulfuration pathway, which supplies cysteine from the indispensable amino acid, methionine, has recently been identified as a significant contributor to GSH synthesis in astrocytes. The purpose of this review is to evaluate the importance of the transsulfuration pathway in these cells, particularly in the context of a reserve pathway that channels methionine towards cysteine when the demand for glutathione is high, or under conditions in which the supply of cystine by the xc exchanger may be compromised.  相似文献   

13.
Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pHcyt, either individually, or in coordination with changes in cytosolic Ca2+ concentration, [Ca2+]cyt, evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca2+ and protons. The variety and complexity of Ca2+ and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca2+]cyt concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca2+]cyt and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca2+]cyt and pHcyt at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.Key words: cytosolic calcium, ionic toxicity, osmotic stress, pH, salinity stress, salt tolerance, signaling  相似文献   

14.
Even moderate variations of the extracellular cysteine concentration were previously shown to affect T cell functions in vitro despite high concentrations of cystine. We therefore analyzed the membrane transport activities of T cells for cysteine and cystine, and the role of low molecular weight thiol in T cell-mediated host responses against a T cell tumor in vivo. A series of T cell clones and tumors including the highly malignant lymphoma L5178Y ESb and its strongly immunogenic variant ESb-D was found to express extremely weak transport activity for cystine but strong transport activity for cysteine. However, not all cells showed the expected requirement for cysteine (or 2-mercaptoethanol (2-ME)) in the culture medium. One group of clones and tumors including the malignant ESb-lymphoma did not respond to changes of extracellular cystine concentrations and was strongly thiol dependent. This group released only little acid soluble thiol (cysteine) if grown in cystine-containing cultures. The other T cell lines, in contrast, were able to maintain high intracellular GSH levels and DNA synthesis activity in cystine-containing culture medium without cystein or 2-ME and released substantial amounts of thiol. This group included the immunogenic ESb-D line. Additional thiol-releasing ESb variants were obtained by culturing large numbers of L5178Y ESb tumor cells in cultures without cysteine or 2-ME. All of these ESb variants showed a significantly decreased tumorigenicity and some of them induced cytotoxic and protective host responses even against the malignant ESb parent tumor. Taken together, our experiments suggest that the host response against a tumor may be limited in certain cases by the failure of the stimulator (i.e., the tumor) cell to deliver sufficient amounts of cysteine to the responding T cells.  相似文献   

15.
In plants, both hyperosmolality and salt stress induce cytosolic calcium increases within seconds, referred to as the hyperosmolality-induced [Ca2+]cyt increases, OICIcyt, and salt stress-induced [Ca2+]cyt increases, SICIcyt. Previous studies have shown that Arabidopsis reduced hyperosmolality-induced [Ca2+]i increase 1 (OSCA1.1) encodes a hyperosmolality-gated calcium-permeable channel that mediates OICIcyt in guard cells and root cells. Multiple OSCA members exist in plants; for example, Oryza sativa has 11 OsOSCAs genes, indicating that OSCAs have diverse biological functions. Here, except for OsOSCA4.1, ten full-length OsOSCAs were separately subcloned, in which OsOSCA1.4 was exclusively localised to the plasma membrane and other nine OsOSCAs-eYFP co-localised with an endoplasmic reticulum marker in Arabidopsis mesophyll protoplasts. OsOSCA1.4 was further identified as a calcium-permeable ion channel that activates an inward current after receiving an osmotic signal exerted by hyperosmolality or salt stress, and mediates OICIcyt and SICIcyt in human embryonic kidney 293 (HEK293) cells. Moreover, overexpression of OsOSCA1.4 in Arabidopsis osca1 mutant complemented osmotic Ca2+ signalling, root growth, and stomatal movement in response to hyperosmolality and salt stress. These results will facilitate further study of OsOSCA-mediated calcium signalling and its distinct roles in rice growth and development.  相似文献   

16.
Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H2O2), wet heat, and germicidal 254 nm and simulated environmental UV radiation. Methods and Results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280–400 and 320–400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H2O2 but not to wet heat or 254‐nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth’s surface and to H2O2. These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. Significance and Impact of the Study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H2O2. This knowledge provides further insight into factors influencing spore resistance and inactivation.  相似文献   

17.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density sub-populations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macro-phage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

18.
Free amino acid pools were examined for cultures of vegetative cells, gametes, and mature zygotes of the unicellular green alga Chlamydomonas reinhardtii (Dangeard). The total pool of amino acids found in premature gametes of strains 137c+ (10.0 pmol-micrograms protein-1) and 137c- (10.8 pmol.micrograms protein-1) decreased to levels about half that seen in vegetative 137c- cells (19.8 pmol.micrograms protein-1). Following light activation, amino acid pools in these gametes increased to 18.7 pmol.micrograms protein-1 in 137c+ cells and 20.0 pmol.micrograms protein-1 in 137c- cells. With the exception of cystine, individual amino acid pools in these cells had increased once more to levels similar to those seen in vegetative cells grown in liquid medium. Levels of cystine remained one to two orders of magnitude lower than that seen in vegetative cells. Mature 137c+ and 137c- gametes mixed in solutions of either 2 mM cystine or 2 mM cysteine (half-cystine) suffered a 52-64% reduction, respectively, in the number of vis-à-vis conjugative pairs formed. This suggests that pools of endogenous cystine may play a role in the onset of mating. In zygotes levels of all amino acid pools, except histidine, were depressed; levels of cystine, valine, and phenylalanine were nondetectable in these cells.  相似文献   

19.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

20.
Summary Extracellular cysteine concentrations between 0.5 and 2.5 mM resulted in death of normal but not cystinotic cells grown in Eagle's minimal essential medium containing supplemental fetal bovine serum and antibiotics. Differential cell survival was determined by viable cell counting using Trypan Blue dye exclusion. In cocultivation experiments of [3H]thymidine-labelled cystinotic fibroblasts with nonradioactive normal fibroblasts, autoradiography confirmed the selective survival of cystinotic cells in medium containing 1 mM cysteine. At this concentration of 1 mM cysteine, intracellular cystine content increased slightly in surviving normal cells but not in cystinotic cells, which normally contain a high level of intracellular cystine. This comparative resistance of cystinotic fibroblasts to elevated extracellular cysteine concentrations forms the basis for an in vitro selective system for these mutant human cells. Further exploration of this resistance phenomenon may well expand the understanding of the molecular defect in cystinotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号