首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic properties of sodium-translocating NADH:quinone oxidoreductases (Na+-NQRs) from the marine bacterium Vibrio harveyi , the enterobacterium Klebsiella pneumoniae , and the soil microorganism Azotobacter vinelandii have been comparatively analyzed. It is shown that these enzymes drastically differ in their affinity to sodium ions. The enzymes also possess different sensitivity to inhibitors. Na+-NQR from A. vinelandii is not sensitive to low 2- n -heptyl-4-hydroxyquinoline N-oxide (HQNO) concentrations, while Na+-NQR from K. pneumoniae is fully resistant to either Ag+ or N-ethylmaleimide. All the Na+-NQR-type enzymes are sensitive to diphenyliodonium, which is shown to modify the noncovalently bound FAD of the enzyme.  相似文献   

2.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio alginolyticus was inactivated by reactive oxygen species. Highest Na+-NQR activity was observed in anaerobically prepared membranes that exhibited 1:1 coupling of NADH oxidation and Q reduction activities (1.6 U x mg(-1)). Optical and EPR spectroscopy documented the presence of b-type cytochromes, a [2Fe-2S] cluster and an organic radical signal in anaerobically prepared membranes from V. alginolyticus. It is shown that the [2Fe-2S] cluster previously assigned to the Na+-NQR originates from the succinate dehydrogenase or the related enzyme fumarate reductase.  相似文献   

3.
The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. Previous studies on the enzyme from Vibrio alginolyticus have shown that the Na(+)-NQR has six subunits, and it is known to contain FAD and an FeS center as redox cofactors. In the current work, the enzyme from the marine bacterium Vibrio harveyi has been purified and characterized. In addition to FAD, a second flavin, tentatively identified as FMN, was discovered to be covalently attached to the NqrC subunit. The purified V. harveyi Na(+)-NQR was reconstituted into proteoliposomes. The generation of a transmembrane electric potential by the enzyme upon NADH:Q(1) oxidoreduction was strictly dependent on Na(+), resistant to the protonophore CCCP, and sensitive to the sodium ionophore ETH-157, showing that the enzyme operates as a primary electrogenic sodium pump. Interior alkalinization of the inside-out proteoliposomes due to the operation of the Na(+)-NQR was accelerated by CCCP, inhibited by valinomycin, and completely arrested by ETH-157. Hence, the protons required for ubiquinol formation must be taken up from the outside of the liposomes, which corresponds to the bacterial cytoplasm. The Na(+)-NQR operon from this bacterium was sequenced, and the sequence shows strong homology to the previously reported Na(+)-NQR operons from V. alginolyticus and Haemophilus influenzae. Homology studies show that a number of other bacteria, including a number of pathogenic species, also have an Na(+)-NQR operon.  相似文献   

4.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.  相似文献   

5.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   

6.
The current knowledge on the Na(+)-translocating NADH:ubiquinone oxidoreductase of the Na(+)-NQR type from Vibrio alginolyticus, and on Na(+) transport by the electrogenic NADH:Q oxidoreductases from Escherichia coli and Klebsiella pneumoniae (complex I, or NDH-I) is summarized. A general mode of redox-linked Na(+) transport by NADH:Q oxidoreductases is proposed that is based on the electrostatic attraction of a positively charged Na(+) towards a negatively charged, enzyme-bound ubisemiquinone anion in a medium of low dielectricity. A structural model of the [2Fe-2S]- and FAD-carrying NqrF subunit of the Na(+)-NQR from V. alginolyticus based on ferredoxin and ferredoxin:NADP(+) oxidoreductase suggests that a direct participation of the Fe/S center in Na(+) transport is rather unlikely. A ubisemiquinone-dependent mechanism of Na(+) translocation is proposed that results in the transport of two Na(+) ions per two electrons transferred. Whereas this stoichiometry of the pump is in accordance with in vivo determinations of Na(+) transport by the respiratory chain of V. alginolyticus, higher (Na(+) or H(+)) transport stoichiometries are expected for complex I, suggesting the presence of a second coupling site.  相似文献   

7.
Two radical signals with different line widths are seen in the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi by EPR spectroscopy. The first radical is observed in the oxidized enzyme, and is assigned as a neutral flavosemiquinone. The second radical is observed in the reduced enzyme and is assigned to be the anionic form of flavosemiquinone. The time course of Na+-NQR reduction by NADH, as monitored by stopped-flow optical spectroscopy, shows three distinct phases, the spectra of which suggest that they correspond to the reduction of three different flavin species. The first phase is fast both in the presence and absence of sodium, and is assigned to reduction of FAD to FADH2 at the NADH dehydrogenating site. The rates of the other two phases are strongly dependent on sodium concentration, and these phases are attributed to reduction of two covalently bound FMN's. Combination of the optical and EPR data suggests that a neutral FMN flavosemiquinone preexists in the oxidized enzyme, and that it is reduced to the fully reduced flavin by NADH. The other FMN moiety is initially oxidized, and is reduced to the anionic flavosemiquinone. One-electron transitions of two discrete flavin species are thus assigned as sodium-dependent steps in the catalytic cycle of Na+-NQR.  相似文献   

8.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

9.
The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). To study the function of the Na(+)-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na(+)-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na(+)-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na(+) to 0.4 mM at 14.7 mM Na(+), indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min(-1) mg(-1) in the wild type compared to 3.1 nmol min(-1) mg(-1) in the NQR deletion strain. Raising the Na(+) concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H(2)O(2) formation by wild-type V. cholerae cells (30.9 nmol min(-1) mg(-1)) were threefold higher than rates observed with the mutant strain lacking the Na(+)-NQR (9.7 nmol min(-1) mg(-1)). Our study shows that environmental Na(+) could stimulate ubisemiquinone formation by the Na(+)-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones.  相似文献   

10.
The preparation and some biochemical properties of a (Na+ + K+)ATPase from male adult Schistosoma mansoni are described. After incubation in a membrane disruption medium, the tegument and carcass of the worms were separated and treated to obtain fractions enriched in (Na+ + K+)ATPase. The activity of the tegumental ouabain sensitive (Na+ + K+)ATPase at 37 C was 20.3 mumole Pi X mg-1 protein X hr-1 and represented 32% of the total ATPase activity. The (Na+ + K+)ATPase prepared from the carcass had a lower specific activity (3.7 mumole Pi X mg-1 protein X hr-1) but a higher relative activity (55%). Similar concentrations of Na+ and K+ activated the enzymes from both sources, and both enzymes were inhibited by similar concentrations of calcium. However, the enzyme from carcass was ten times more sensitive to ouabain than the enzyme from tegument. Comparison with results obtained on the (Na+ + K+)ATPase of human heart showed that the enzymes from the worms were more resistant to ouabain. The half maximal inhibitory concentration of dihydroouabain compared to that of ouabain was also different in the enzymes from human and worm. We conclude that (1) there exists at least one structural difference between the (Na+ + K+)ATPase of S. mansoni and that of the human host, and (2) it is useful to separately study the enzymes from tegument and carcass because they differ in sensitivity to cardiac glycosides.  相似文献   

11.
Feedback inhibition of nitrogenase.   总被引:8,自引:4,他引:4       下载免费PDF全文
No inhibition of nitrogenase activity by physiological levels of NH4+ or carbamyl phosphate was observed in extracts of Azotobacter vinelandii. All of the 15N2 reduced by cultures which received no NH4+ was found in the cells. By contrast, more than 95% of the 15N2 reduced by cultures which had been given NH4+ was found in the medium. Failure to examine the culture medium would lead to the erroneous conclusion that N2 fixation is inhibited by NH4+. Nitrogenase in a derepressed mutant strain of A. vinelandii was fully active in vivo in the presence of NH4+. The addition of NH4Cl to N2-fixing cultures resulted in no decrease in the N2-reducing activity of intact cells of Klebsiella pneumoniae or Clostridium pasteurianum and only a small (15%) decrease in A. vinelandii. Therefore, no significant inhibition of nitrogenase by NH4+ or metabolites derived from NH4+ exists in A. vinelandii, K. pneumoniae, or C. pasteurianum.  相似文献   

12.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.  相似文献   

13.
Na(+)-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na(+)-gradient that can provide energy for the cell. Na(+)-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na(+)-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

14.
A Bali  G Blanco  S Hill    C Kennedy 《Applied microbiology》1992,58(5):1711-1718
A mutation in the gene upstream of nifA in Azotobacter vinelandii was introduced into the chromosome to replace the corresponding wild-type region. The resulting mutant, MV376, produced nitrogenase constitutively in the presence of 15 mM ammonium. When introduced into a nifH-lacZ fusion strain, the mutation permitted beta-galactosidase production in the presence of ammonium. The gene upstream of nifA is therefore designated nifL because of its similarity to the Klebsiella pneumoniae nifL gene in proximity to nifA, in mutant phenotype, and in amino acid sequence of the gene product. The A. vinelandii nifL mutant MV376 excreted significant quantities of ammonium (approximately 10 mM) during diazotrophic growth. In contrast, ammonium excretion during diazotrophy was much lower in a K. pneumoniae nifL deletion mutant (maximum, 0.15 mM) but significantly higher than in NifL+ K. pneumoniae. The expression of the A. vinelandii nifA gene, unlike that of K. pneumoniae, was not repressed by ammonium.  相似文献   

15.
A mutation in the gene upstream of nifA in Azotobacter vinelandii was introduced into the chromosome to replace the corresponding wild-type region. The resulting mutant, MV376, produced nitrogenase constitutively in the presence of 15 mM ammonium. When introduced into a nifH-lacZ fusion strain, the mutation permitted beta-galactosidase production in the presence of ammonium. The gene upstream of nifA is therefore designated nifL because of its similarity to the Klebsiella pneumoniae nifL gene in proximity to nifA, in mutant phenotype, and in amino acid sequence of the gene product. The A. vinelandii nifL mutant MV376 excreted significant quantities of ammonium (approximately 10 mM) during diazotrophic growth. In contrast, ammonium excretion during diazotrophy was much lower in a K. pneumoniae nifL deletion mutant (maximum, 0.15 mM) but significantly higher than in NifL+ K. pneumoniae. The expression of the A. vinelandii nifA gene, unlike that of K. pneumoniae, was not repressed by ammonium.  相似文献   

16.
To examine the distribution of the Na(+)-translocating NADH-quinone reductase (Na(+)-NQR) among marine bacteria, we developed a simple screening method for the detection of this enzyme. By reference to the homologous sequences of the Na(+)-NQR operons from Vibrio alginolyticus and Haemophilus influenzae, a pair of primers was designed for amplification of a part of the sixth ORF (nqr6) of the Na(+)-NQR operon. When PCR was performed using genomic DNA from 13 marine bacteria, a 0.9-kbp fragment corresponding to nqr6 was amplified in 10 strains. Although there were three PCR-negative strains phylogenetically, based on the sequence of the 16S rRNA, these were placed far from the PCR-positive strains. No product was observed in the case of nonmarine bacteria. The nucleotide and predicted amino acid sequences of nqr6 were highly conserved among the PCR-positive marine bacteria. A phylogenetic analysis of marine bacteria, based on nqr6 sequencing, was performed.  相似文献   

17.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

18.
In Klebsiella pneumoniae, Mo accumulation appeared to be coregulated with nitrogenase synthesis. O2 and NH+4, which repressed nitrogenase synthesis, also prevented Mo accumulation. In Azotobacter vinelandii, Mo accumulation did not appear to be regulated Mo was accumulated to levels much higher than those seen in K. pneumoniae even when nitrogenase synthesis was repressed. Accumulated Mo was bound mainly to a Mo storage protein, and it could act as a supply for the Mo needed in component I synthesis when extracellular Mo had been exhausted. When A. vinelandii was grown in the presence of WO2-(4) rather than MoO2-(4), it synthesized a W-containing analog of the Mo storage protein. The Mo storage protein was purified from both NH+4 and N2-grown cells of A. vinelandii and found to be a tetramer of two pairs of different subunits binding a minimum of 15 atoms of Mo per tetramer.  相似文献   

19.
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a component of respiratory electron-transport chain of various bacteria generating redox-driven transmembrane electrochemical Na(+) potential. We found that the change in Na(+) concentration in the reaction medium has no effect on the thermodynamic properties of prosthetic groups of Na(+)-NQR from Vibrio harveyi, as was revealed by the anaerobic equilibrium redox titration of the enzyme's EPR spectra. On the other hand, the change in Na(+) concentration strongly alters the EPR spectral properties of the radical pair formed by the two anionic semiquinones of FMN residues bound to the NqrB and NqrC subunits (FMN(NqrB) and FMN(NqrC)). Using data obtained by pulse X- and Q-band EPR as well as by pulse ENDOR and ELDOR spectroscopy, the interspin distance between FMN(NqrB) and FMN(NqrC) was found to be 15.3 ? in the absence and 20.4 ? in the presence of Na(+), respectively. Thus, the distance between the covalently bound FMN residues can vary by about 5 ? upon changes in Na(+) concentration. Using these results, we propose a scheme of the sodium potential generation by Na(+)-NQR based on the redox- and sodium-dependent conformational changes in the enzyme.  相似文献   

20.
Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号