首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Guanine+adenine) strands of DNA are known to associate into guanine tetraplexes, homodimerize into parallel or antiparallel duplexes, and fold into a cooperatively melting single strand resembling the protein alpha helix. Using CD spectroscopy and other methods, we studied how this conformational polymorphism depended on the primary structure of DNA. The study showed that d(GGGA)(5) and d(GGA)(7) associated into homoduplexes at low salt or in the presence of LiCl but were prone to guanine tetraplex formation, especially in the presence of KCl. In addition, they yielded essentially the same CD spectrum in the presence of ethanol as observed with the ordered single strand of d(GA)(10). Strands of d(GA)(10), d(GGAA)(5), d(GAA)(7), and d(GAAA)(5) associated into homoduplexes in both LiCl and KCl solutions, but not into guanine tetraplexes. d(GAAA)(5) and d(GAA)(7) further failed to form the single-stranded conformer in aqueous ethanol. Adenine protonation, however, stabilized the single-stranded conformer even in these adenine-rich fragments. The ordered single strands, homoduplexes as well as the guanine tetraplexes, all provided strikingly similar CD spectra, indicating that all of the conformers shared similar base stacking geometries. The increasing adenine content only decreased the conformer thermostability.  相似文献   

2.
Kitahara R  Sareth S  Yamada H  Ohmae E  Gekko K  Akasaka K 《Biochemistry》2000,39(42):12789-12795
A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.  相似文献   

3.
4.
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.  相似文献   

5.
The (GA)(n) microsatellite has been known from previous studies to adopt unusual, ordered, cooperatively melting secondary structures in neutral aqueous solutions containing physiological concentrations of salts, at acid pH values or in aqueous ethanol solutions. To find more about the primary structure specificity of these structures, we performed parallel comparative studies of related tetranucleotide repeats (GAGC)(5), (GAGT)(5), and (GACA)(5). The general conclusion following from these comparative studies is that the primary structure specificity is fairly high, indicating that not only guanines but also adenines play a significant role in the stabilization of these unusual structures. (GAGC)(5) is a hairpin or a duplex depending on DNA concentration. Neither acid pH nor ionic strength or the presence of ethanol changed the secondary structure of (GAGC)(5) in a significant way. (GACA)(5) forms a weakly stable hairpin in neutral aqueous solutions but forms a duplex at acid pH where cytosine is protonated. (GAGT)(5) behaves most similar to (GAGA)(5). Salt induces its hairpin to duplex transition at neutral pH and an isomerization into another, probably parallel stranded, duplex takes place at acid pH. (GAGT)(5) is the only of the three present 20-mers that responds to ethanol like (GAGA)(5).  相似文献   

6.
Competition of the trivalent cation, Co(NH3)(3+)(6), with K+ and Na+ ions in binding to DNA was studied by equilibrating oriented DNA fibers with ethanol/water solutions (65 and 52% v/v EtOH), containing different combinations and concentrations of KCl and NaCl and constant concentration (0.8 mM) of Co(NH3)(6)Cl(3). The degree of Co(NH3)(3+)(6) binding to DNA does not depend significantly on the ethanol concentration or on the kind of univalent cation (Na+ or K+). The ion exchange selectivity coefficient of monovalent-trivalent ion competition, D(1)(c3), increases with the concentration of Me+, C(o)(+), and the monotonic dependence of log D(1)(c3) vs log C(o)(+) has an inflection between 100 and 300 mM that is caused by a structural transformation of DNA from A- to B-form. The ion exchange experimental data are compared with results of grand canonical Monte Carlo (GCMC) simulations of systems of parallel and hexagonally ordered, discretely charged polyions with density and spatial distribution of the charged groups modeling B- and A-forms of DNA. The GCMC method for discretely charged models of the DNA polyion produces a quantitative agreement with experimental data on trivalent-monovalent ion competition in dependence on DNA structural state and salt concentration. Based on this and previous studies it is concluded that the affinity of DNA for the cations decreases in the order Co(NH3)(3+)(6) > Ca2+ > Mg2+ > Na+ approximately K+ > Li+. DNA does not exhibit selectivity for Na+ or K+ in ethanol/water solutions either in the absence or in the presence of Co(NH3)(3+)(6), Ca2+, and Mg2+.  相似文献   

7.
We designed and synthesized the peptide nucleic acid (PNA)-peptide conjugates having anthracene chromophores and investigated their interactions with calf thymus DNA, [d(AT)(10)](2), [d(GC)(10)](2), and [d(AT)(10)dA(6)](2). Considering the synthesis compatibility and expecting that a novel DNA analogue, PNA, can improve DNA binding properties of alpha-helix peptides, we attempted to attach thymine PNA oligomers at the C-terminus of a 14 amino acid alpha-helix peptide that contained a pair of artificial intercalators, anthracene, as a probe, and to examine their interactions with DNA using anthracene UV, fluorescence and circular dichroism properties. The results observed in this study showed that the designed peptide folded in an alpha-helix structure in the presence of calf thymus DNA, [d(AT)(10)](2), and [d(AT)(10)dA(6)](2) with the chromophores at the side-chain being fixed with a left-handed chiral-sense orientation. The alpha-helix and the anthracene signals were not observed for [d(GC)(10)](2). Incorporation of thymine PNA oligomers into the designed alpha-helix peptide increased the DNA binding ability to [d(AT)(10)dA(6)](2) with increasing the length of the PNA without changing the conformations of the peptide backbone and the anthracene side-chains.  相似文献   

8.
At 1.0 atm pressure and in 150 mM sodium phosphate (pH = 7.0), bovine carbonic anhydrase undergoes a nondenaturational conformational change at 30.3 degrees C and an unfolding transition from the physiological conformer to the molten globule state at 67.4 degrees C. The pressure dependences of the temperatures of these transitions have been studied under reversible conditions for the purpose of understanding DeltaH degrees , DeltaS degrees , and DeltaV for each conformational change. Temperatures for the low-temperature to physiological-temperature conformational change T(L-->P) are obtained from physiologically relevant conditions using slow-scan-rate differential scanning calorimetry. Temperatures for the physiological-temperature conformation to molten globule state conversion T(P-->MG) are obtained from differential scanning calorimetry measurements of the apparent transition temperature in the presence of guanidine hydrochloride extrapolated to zero molar denaturant. The use of slow-scan-rate differential scanning calorimetry permits the calculation of the activation volume for the conversion of the low-temperature conformer to the physiological-temperature conformer DeltaV(double dagger)(L-->P). At 1.0 atm pressure, the transition from the low-temperature conformer to the physiological-temperature conformer involves a volume change DeltaV(L-->P) = 15 +/- 2 L/mole, which contrasts with the partial unfolding of the physiological-temperature conformer to the molten globule state (DeltaV(P-->MG) = 26 +/- 9 L/mole). The activation volume for this process DeltaV(double dagger)(L-->P) = 51 +/- 9 L/mole and is consistent with a prior thermodynamic analysis that suggests the conformational transition from the low-temperature conformation to the physiological-temperature conformation possesses a substantial unfolding quality. These results provide further evidence the structure of the enzyme obtained from crystals grown below 30 degrees C should not be regarded as the physiological structure (the normal bovine body temperature is 38.3 degrees C). These results should therefore have implications in any area that seeks to correlate the crystal structure of bovine carbonic anhydrase to physiological function.  相似文献   

9.
Nový J  Urbanová M 《Biopolymers》2007,85(4):349-358
The interactions of two different porphyrins, without axial ligands-5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP) and with bulky meso substituents-5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)porphyrin tetrachloride (TMAP), with (dG-dC)10 and (dA-dT)10 were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy at different [oligonucleotide]/[porphyrin] ratios, where [oligonucleotide] and [porphyrin] are the concentrations of oligonucleotide per base-pair and porphyrin, respectively. The combination of VCD and ECD spectroscopy enables us to identify the types of interactions, and to specify the sites of interactions: The intercalative binding mode of Cu(II)TMPyP with (dG-dC)(10), which has been well described, was characterized by a new VCD "marker" and it was shown that the interaction of Cu(II)TMPyP with (dA-dT)10 via external binding to the phosphate backbone and major groove binding caused transition from the B to the non-B conformer. TMAP interacted with the major groove of (dG-dC)10, was semi-intercalated into (dA-dT)10, and caused significant variation in the structure of both oligonucleotides at the higher concentration of porphyrin. The spectroscopic techniques used in this study revealed that porphyrin binding with AT sequences caused substantial variation of the DNA structure. It was shown that VCD spectroscopy is an effective tool for the conformational studies of nucleic acid-porphyrin complexes in solution.  相似文献   

10.
Copper(II) complexes of N-benzothiazolsulfonamides, [Cu(N-2-(5,6-dimethylbenzothiazole)toluenesulfonamidate)(2)(dmso)(2)] (1), [Cu(N-2-(6-chlorobenzothiazole)benzenesulfonamidate)(2)(dmso)(2)] (2) and [Cu(N-2-(6-chlorobenzothiazole)toluenesulfonamidate)(2)(dmso)(2)] (3) with interesting protective properties against superoxide radicals have been prepared. The compounds have been characterized by X-ray diffraction and their chemical properties have been studied by spectroscopic methods. The crystal structure of 1 shows that the copper(II) is surrounded by two benzothiazole N atoms from the sulfonamide ligands and two O atoms from the dimethylsulfoxide molecules in a square planar arrangement. The coordination polyhedron around copper(II) in 2 and 3 is distorted square pyramidal being the metal ion linked to benzothiazole N and sulfonamidate O atoms of the ligand and to two dimethylsulfoxide O atoms. The three complexes have a strong protective action over Delta sod1 mutant of Saccharomyces cerevisiae against reactive oxygen radicals derived from respiration and against those generated by hydrogen peroxide and menadione.  相似文献   

11.
Differential scanning calorimetry (DSC) analyses of a series of collagen model peptides suggest that 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) have different effects on the stability of the collagen triple helices according to the sequence of amino acids and stereochemistry at the 4 positions of these imino acids. The thermodynamic parameters indicate that the enhanced stabilities are classified into two different types: the enthalpy term is primarily responsible for the enhanced stability of the triple helix of (Pro-Hyp(R)-Gly)(10), whereas the entropy term dominates the enhanced stability of (Pro-fPro(R)-Gly)(10). The difference between the molecular volumes observed in solution and intrinsic molecular volumes calculated from the crystal structure indicates the different hydration states of these peptides. (Pro-Hyp(R)-Gly)(10) is highly hydrated compared to (Pro-Pro-Gly)(10), which contributes to the larger enthalpy. In contrast, the volume of (Pro-fPro(R)-Gly)(10) shows a smaller degree of hydration than that of (Pro-Pro-Gly)(10). The entropic cost of forming the triple helix of the fPro-containing peptides is compensated by a decrease in an ordered structure of water molecules surrounding the peptide molecule, although the contribution of enthalpy originating from the hydration is reduced. These arguments about the different contribution of entropic and enthalpic terms were successfully applied to interpret the stability of the triple helix of (fPro(S)-Pro-Gly)(10) as well.  相似文献   

12.
The polypurine.polypyrimidine sequence requirements for the formation of sticky DNA were evaluated in Escherichia coli plasmid systems to determine the potential occurrence of this conformation throughout biological systems. A mirror repeat, dinucleotide tract of (GA.TC)(37), which is ubiquitous in eukaryotes, formed sticky DNA, but shorter sequences of 10 or 20 repeats were inert. (GGA.TCC)(n) inserts (where n = 126, 159, and 222 bp) also formed sticky DNA. As shown previously, the control sequence (GAA.TTC)(150) (450 bp) readily adopted the X-shaped sticky structure; however, this structure has never been found for the nonpathogenic (GAAGGA.TCCTTC)(65) of the same approximate length (390 bp). A sequence that is replete with polypurine.polypyrimidine tracts that can form triplexes and slipped structures but lacks long repeating motifs (the 2.5-kbp intron 21 sequence from the polycystic kidney disease gene 1) was also inert. Interestingly, tracts of (GAA.TTC)(n) (where n = 176 or 80) readily formed sticky DNA with (GAAGGA.TCCTTC)(65) cloned into the same plasmid when the pair of inserts was in the direct, but not in the indirect (inverted), orientation. The stabilities of the triple base (Watson-Crick and Hoogsteen) interactions in the DNA/DNA associated triplex region of the sticky conformations account for these observations. Our results have significant chemical and biological implications for the structure and function of this unusual DNA conformation in Friedreich's ataxia.  相似文献   

13.
The investigation of common structural motifs provides additional information on why proteins conserve similar topologies yet may have non-conserved amino acid sequences. Proteins containing the ubiquitin superfold have similar topologies, although the sequence conservation is rather poor. Here, we present novel similarities and differences between the proteins ubiquitin and NEDD8. They have 57% identical sequence, almost identical backbone topology and similar functional strategy, although their physiological functions are mutually different. Using variable pressure NMR spectroscopy, we found that the two proteins have similar conformational fluctuation in the evolutionary conserved enzyme-binding region and contain a structurally similar locally disordered conformer (I) in equilibrium with the basic folded conformer (N). A notable difference between the two proteins is that the equilibrium population of I is far greater for NEDD8 (DeltaG(0)(NI)<5 kJ/mol) than for ubiquitin (DeltaG(0)(NI)=15.2(+/-1.0) kJ/mol), and that the tendency for overall unfolding (U) is also far higher for NEDD8 (DeltaG(0)(NU)=11.0(+/-1.5) kJ/mol) than for ubiquitin (DeltaG(0)(NU)=31.3(+/-4.7) kJ/mol). These results suggest that the marked differences in thermodynamic stabilities of the locally disordered conformer (I) and the overall unfolding species (U) are a key to determine the functional differences of the two structurally similar proteins in physiology.  相似文献   

14.
Highly polymorphic di- and tetranucleotide repeats in and around Npr3, a potential candidate gene for hypertension, have been identified using a novel approach. Because this chromosomal site is rich in repetitive DNA and difficult to sequence, P1 artificial chromosomes were retrofitted with a loxP transposon to map the gene sequence within a clone using a series of nested deletions. Sequences from ends of deletions 1-3 kb apart identified a (CA)(20) and a (TA)(18)-(CA)(8) repeat 8 kb upstream and within an intron of Npr3, respectively. DNA from 17 individuals was analyzed for length polymorphisms in these and eight additional repeats identified in 200 kb of working draft sequence from this region in GenBank. The sequence contigs and microsatellite repeats from GenBank were ordered using the P1-derived artificial chromosome deletion series. Several of these repeats were found to vary considerably in length in the set of genomic DNA tested. Since this site in chromosome 5p has recently been implicated in disease in studies with genetically hypertensive rats, the microsatellite markers reported here will be useful for genetic analysis and may even be implicated in the disease process in humans. We discuss how these types of data are useful for interpreting draft DNA sequence coming out of the genome projects, and the utility of deletion clones as a resource for ordering contigs and gap filling.  相似文献   

15.
(dG-dC)n.(dG-dC) was converted to the Z conformer by heating in the presence of Mn++n. Reaction of this preparation with the crosslinking reagent, DL-diepoxybutane (DEB), stabilized this conformer so that it retained its structure even when returned to conditions that favored reversion to the B conformation. Treatment of the crosslinked Z conformer with periodate caused scission of the crosslink, allowing reversion to the B conformer. Reaction of (dG-dC)n.(dG-dC)n in the B conformation with DEB did not prevent conversion to the Z conformer in 4M NaC1; dialysis of the high salt solution against low ionic strength buffer allowed return to the B conformer. The Z in equilibrium B transitions were followed by circular dichroism studies and immunochemical procedures. The results suggest the feasibility of stabilizing Z sequences of DNA in chromatin by crosslinking, so that they could then be identified after DNA isolation.  相似文献   

16.
The Sso10b (or Alba) family of proteins is a conserved group of archaeal and eukaryotic proteins which are thought to play a role in both chromatin organization and RNA metabolism. We describe here the solution structure and properties of Sso10b2 from Sulfolobus solfataricus. NMR data including residual dipolar couplings and (15)N relaxation data demonstrated that the protein adopts a beta(1)alpha(1)beta(2)alpha(2)beta(3)beta(4) topology with an IF-3-like fold. The protein dimerizes in solution at 30 degrees C via a hydrophobic surface defined by the C-terminal alpha(2)beta(3)beta(4) elements with a structure similar to one of the putative dimers indicated by previous crystal structures. DSC and circular dichroism data demonstrated an unusual two-state structural transition near the growth temperature which led to an increase in beta-sheet content without dissociation of the dimer. The cooperativity of the transition exceeded that of a dimer at pH 7, demonstrating the presence of higher order oligomers near the growth temperature at pH 7. Reverse titrations of Sso10b2 with nucleic acid showed that the protein binds single-stranded DNA (K(d) of 3 x 10(-)(7) M) with higher affinity than RNA (1.3 x 10(-)(6) M) or double-stranded DNA (1.5 x 10(-)(5) M) in 10 mM KH(2)PO(4) (pH 7.0, 20 degrees C). NMR chemical shift perturbation data indicated that single-stranded DNA and RNA binding occurred across the same dimer interface and encompassed a surface defined by the C-terminal ends of the beta(1), beta(2), and beta(3) strands of each monomer.  相似文献   

17.
18.
Hashimoto S  Takeuchi H 《Biochemistry》2006,45(32):9660-9667
Ultraviolet resonance Raman (UVRR) spectroscopy has been used to characterize the structure and hydrogen bonding state of the distal histidine (His42) in horseradish peroxidase (HRP) complexed with carbon monoxide (HRP-CO). The HRP-CO - HRP UVRR difference spectrum in D(2)O solution at pD 7.0 shows two positive peaks at 1408 and 1388 cm(-)(1), which are ascribable to medium-to-weak and strong hydrogen bonding states, respectively, of the protonated imidazolium side chain of His42 in HRP-CO. Both His42 peaks decrease in intensity with increase of pD with a midpoint of transition at pD 8.8, indicating that the pK(a) of His42 in HRP-CO is 8.8. The CO ligand exhibits two C-O stretching Raman peaks at 1932 and 1902 cm(-)(1), the latter of which diminishes at alkaline pD and is assignable to a strong hydrogen-bonded state. It is most probable that the imidazolium side chain of His42 forms a strong hydrogen bond with CO, giving a His42 peak at 1388 cm(-)(1) and a CO peak at 1902 cm(-)(1), in one conformer. The other hydrogen bonding state of His42, giving the 1408 cm(-)(1) peak, is ascribed to another conformer forming a medium-to-weak hydrogen bond with a water molecule in the distal cavity. The present finding that His42 can act as a strong proton donor to CO and decrease the CO bond order is consistent with the role of His42 as a general acid to cleave the O-O bond of hydrogen peroxide, a specific oxidizing agent, in the catalytic cycle of HRP.  相似文献   

19.
Kypr J  Vorlícková M 《Biopolymers》2002,67(4-5):275-277
We demonstrate that the characteristic circular dichroism (CD) features of the parallel-stranded DNA tetraplex of d(G4), especially the strong band at 260 nm, are characteristic for the B and A forms of the antiparallel duplex of d(C4G4). Hence, this band evidently originates from intrastrand guanine-guanine stacking, which is therefore very similar in the duplex and tetraplex DNA. In addition, the same type of the CD spectrum is provided by the ordered single strand of d(GA)10. This observation suggests that the ordered single strand of d(GA)10 is stabilized by a core of guanines stacked like in the parallel tetraplex. This view is used to start the modeling of the molecular structure of the ordered d(GA)10 single strand. Our studies suggest that guanine itself is strong enough to stabilize various secondary structures of DNA, which is a property relevant to thinking about the origin and evolution of molecular replicators.  相似文献   

20.
Kozlov AG  Lohman TM 《Biochemistry》2002,41(39):11611-11627
The kinetic mechanism of transfer of the homotetrameric Escherichia coli SSB protein between ssDNA molecules was studied using stopped-flow experiments. Dissociation of SSB from the donor ssDNA was monitored after addition of a large excess of unlabeled acceptor ssDNA by using either SSB tryptophan fluorescence or the fluorescence of a ssDNA labeled with an extrinsic fluorophore [fluorescein (F) or Cy3]. The dominant pathway for SSB dissociation occurs by a "direct transfer" mechanism in which an intermediate composed of two DNA molecules bound to one SSB tetramer forms transiently prior to the release of the acceptor DNA. When an initial 1:1 SSB-ssDNA complex is formed with (dT)(70) in the fully wrapped (SSB)(65) mode so that all four SSB subunits are bound to (dT)(70), the formation of the ternary intermediate complex occurs slowly with an apparent bimolecular rate constant, k(2,app), ranging from 1.2 x 10(3) M(-1) s(-1) (0.2 M NaCl) to approximately 5.1 x 10(3) M(-1) s(-1) (0.4 M NaBr), and this rate limits the overall rate of the transfer reaction (pH 8.1, 25 degrees C). These rate constants are approximately 7 x 10(5)- and approximately 7 x 10(4)-fold lower, respectively, than those measured for binding of the same ssDNA to an unligated SSB tetramer to form a singly ligated complex. However, when an initial SSB-ssDNA complex is formed with (dT)(35) so that only two SSB subunits interact with the DNA in an (SSB)(35) complex, the formation of the ternary intermediate occurs much faster with a k(2,app) ranging from >6.3 x 10(7) M(-1) s(-1) (0.2 M NaCl) to 2.6 x 10(7) M(-1) s(-1) (0.4 M NaBr). For these experiments, the rate of dissociation of the donor ssDNA determines the overall rate of the transfer reaction. Hence, an SSB tetramer can be transferred from one ssDNA molecule to another without proceeding through a free protein intermediate, and the rate of transfer is determined by the availability of free DNA binding sites within the initial SSB-ssDNA donor complex. Such a mechanism may be used to recycle SSB tetramers between old and newly formed ssDNA regions during lagging strand DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号