首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron spin resonances (ESR) of several native and modified melanins have been determined. Melanins isolated from black wool and synthesized from 3,4-dihydroxyl-L-phenylalanine (L-DOPA) and tyrosine all show similar ESR signals. Modification of the isolated melanins by treatment with reducing agents causes some lightening in color and slight changes in the ESR spectra. Lithium and liquid ammonia (Birch) reduction applied to melanins from wool and L-DOPA gave very different results, as reflected by ESR spectra, but in both cases the changes were much greater than those produced by other treatments. In general, reductive treatments in nonaqueous media in the presence of metals increase the free radical content and line width, whereas treatment in aqueous media resulted in decreased free radical content. These observations are consistent with a melanin pigment which is an irregular polymer and has unpaired electrons localized on different but similar monomer units.  相似文献   

2.
In vitro scavenger activity of some flavonoids and melanins against O2-(.).   总被引:8,自引:0,他引:8  
The scavenger activity against O2-. of some flavonoids and melanins (synthetic melanins and melanins isolated from animal tissues, vegetable seeds, and mushroom spores) has been studied by ESR spectrometry. All these substances, except flavon and flavanone, diminish the signal of O2-. generated in vitro by a system containing H2O2 and acetone in an alkaline medium. It is shown that the presence of hydroxyl groups in the B ring of flavonoids is essential for their scavenger activity. Moreover, the presence of a hydroxyl at C-3 enhances the scavenger ability of flavonoids. Generally, aglycons are more active than their glycosides. It seems plausible that the antioxidant property of these substances comes from their scavenger activity against O2-(.). It is also pointed out that the scavenger activity shown by melanins, is strictly correlated with their nature of stable free radical.  相似文献   

3.
Cryptococcus neoformans produces pigments in vitro in the presence of exogenous substrate. We characterized acid-resistant particles isolated from pigmented cells grown in L-dopa, methyl-dopa, (-)-epinephrine or (-)-norepinephrine. The goals of this study were to determine whether pigments made from each of these substrates were melanins and the consequences of pigmentation on related cell characteristics. The greatest yield of acid-resistant particles occurred with methyl-dopa followed by L-dopa. Electron microscopy indicated that L-dopa and methyl-dopa produced particles with thicker shells. The mAb 6D2 reacted with all particles, but a lower reactivity was observed with epinephrine-derived particles. ESR analysis revealed that epinephrine-derived particles failed to produce a stable free radical signal typical of melanins. Growth of C. neoformans in different substrates affected cell and capsule size but not capsule induction. Hence, the type of pigment produced by C. neoformans is dependent on the substrate and not all pigments meet the criteria for melanins.  相似文献   

4.
The infrared and electron spin resonance spectra of synthetic 3,4-dihydroxyphenylalanine (DOPA) and tyrosine melanins and chemically modified melanin samples were determined, and it was shown that unmodified and reduced DOPA melanins exhibited similar ir spectra. Oxidized DOPA melanins showed a higher number of carboxy groups in the sample. A significant increase of free radical content in reduced DOPA melanin and a decrease of free radical content in oxidized DOPA melanin in comparison to unmodified samples were demonstrated by the use of ESR methodology. Methylation of tyrosine melanin with an excess of diazomethane gave very rich ir spectra as compared to melanins methylated with methanol saturated by gaseous HCl. In tyrosine melanin samples the esterification of carboxy groups with methanol caused a decrease in the free radical content. When diazomethane was used, the methylated melanin samples had free radical levels reduced to only about 4% of the total observed for unmodified tyrosine melanin.  相似文献   

5.

Background

Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown.

Methodology/Principal Findings

We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·1018, 7.09·1018, and 9.05·1017 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy (137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies.

Conclusions/Significance

We propose that due to melanin''s numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species.  相似文献   

6.
The human skin and eye melanin is commonly viewed as an efficient photoprotective agent. To elucidate the molecular mechanism of the melanin-dependent photoprotection, we studied the interaction of two synthetic melanins, dopa-melanin and cysteinyldopa-melanin, with a wide range of oxidising and reducing free radicals using the pulse radiolysis technique. We have found that although both types of free radicals could efficiently interact with the synthetic melanins, their radical scavenging properties depended, in a complex way, on the redox potential, the electric charge and the lifetime of the radicals. Repetitive pulsing experiments, in which the free radicals, probing the polymer redox sites, were generated from four different viologens, indicated that the eumelanin model had more reduced than oxidised groups accessible to reaction with the radicals. Although with many radicals studied, melanin interacted via simple one-electron transfer processes, the reaction of both melanins with the strongly oxidising peroxyl radical from carbon tetrachloride, involved radical addition. Our study suggests that the free radical scavenging properties of melanin may be important in the protection of melanotic cells against free radical damage, particularly if the reactive radicals are generated in close proximity to the pigment granules.  相似文献   

7.
Insect cuticles (exuviae; cast skins) were examined for the first time by ESR spectroscopy for the presence of stable free radicals, as found in melanins. All cuticles, except those from a locust albino strain, irrespective of the presence of melanin, provided single-line signals of varied g-values and linewidths. The ESR signals of melanins, isolated or in cuticles, were characterized by g-values <2.004 and small linewidths in the range of 4-6G, while sclerotized cuticles, lacking melanin, showed g-values >2.004 and broad linewidths of 5-11 G. The melanin spectra were comparable to those reported for eumelanins with indol-based monomers. Minor signals ascribed to pheomelanins were found in several probes. The 'sclerotin' spectra were broader and displayed unresolved hyperfine structure in some cases. As for melanins, the location and environment of the radicals in cuticles giving rise to the two types of ESR spectra could not be assigned. Changes in the radical environment due to insecticide or solvent treatment can be detected by ESR spectroscopy.  相似文献   

8.
A linear correlation have been found between the amplitude of the free radical signal of the electron spin resonance (ESR) spectrum of paraffin embedded liver blocks and the number of bile casts in the histological sections made from these blocks. It has been suggested that the major part of the ESR free radical signal arises from bile pigment, but the contribution of "age pigment" cannot be excluded. On the basis of model experiments the majority of these radical centers was assigned to protein bound bilirubin. In the course of histological processing more than 80% of various free radical centers arising in air dried liver tissue is extracted.  相似文献   

9.
Free radical reduction in the human epidermis   总被引:1,自引:0,他引:1  
The human epidermis presents the first line of defense against invading free radicals. Therefore, the surface of the skin must be equipped to deal with both the penetration of ultra-violet light as well as the neutralization of reactive photochemical products such as superoxide anion radical, hydrogen peroxide and especially hydroxyl radicals. Consequently, the human epidermis contains a variety of anti-oxidants to reduce oxygen radicals and hydrogen peroxide. The photochemical production of hydroxyl radicals, from both extracellular and intracellular hydrogen peroxide, is of special significance to the integrity of cells in the human epidermis. Recently, both biochemical and clinical studies on the healthy human population, and on patients with pigmentation disorders, suggested a connection between free radical defense by plasma membrane associated thioredoxin reductase and melanin biosynthesis. This research provided the first evidence for a direct relationship between free radical concentration and pigmentation. Furthermore, this system has been shown to be regulated by both extracellular and intracellular calcium concentrations. Clinical studies show depigmentation disorders vitiligo and tyrosinase positive albinism (Hermansky-Pudlak syndrome) appear to have defective calcium uptake systems influencing both free radical defense and melanin biosynthesis.  相似文献   

10.
The major pigments found in the skin, hair, and eyes of humans and other animals are melanins. Despite significant research efforts, the current understanding of the molecular structure of melanins, the assembly of the pigment within its organelle, and the structural consequences of the association of melanins with protein and metal cations is limited. Likewise, a detailed understanding of the photochemical and photophysical properties of melanins has remained elusive. Many types of melanins have been studied to date, including natural and synthetic model pigments. Such studies are often contradictory and to some extent the diversity of systems studied may have detracted from the development of a basic understanding of the structure and function of the natural pigment. Advances in the understanding of the structure and function of melanins require careful characterization of the pigments examined so as to assure the data obtained may be relevant to the properties of the pigment in vivo. To address this issue, herein the influence of isolation procedures on the resulting structure of the pigment is examined. Sections describing the applications of new technologies to the study of melanins follow this. Advanced imaging technologies such as scanning probe microscopies are providing new insights into the morphology of the pigment assembly. Recent photochemical studies on photoreduction of cytochrome c by different mass fraction of sonicated natural melanins reveal that the photogeneration of reactive oxygen species (ROS) depends upon aggregation of melanin. Specifically, aggregation mitigates ROS photoproduction by UV-excitation, suggesting the integrity of melanosomes in tissue may play an important role in the balance between the photoprotective and photodamaging behaviors attributed to melanins. Ultrafast laser spectroscopy studies of melanins are providing insights into the time scales and mechanisms by which melanin dissipates absorbed light energy.  相似文献   

11.
Free radicals (spectroscopic splitting factor; g factor = 2.003-2.005) were investigated in formol-fixed, paraffin embedded heart-muscle tissue sections using electron spin resonance (ESR) spectra. Changes in signal amplitude, g factor and line width were registered during deparaffinization, chloroform-methanol extraction, vapour treatment and bromination. An attempt was made to identify the source of the ESR signals by a correlation between the signal amplitude and number of fluorescent and/or Sudan-black-positive granules counted in the tissue sections. An increase in signal amplitude, g value and line narrowing were characteristic of the ascorbyl radical after deparafinization in air. Vapour treatment revelated that the broader signal has lower g factor, a characteristic that is tentatively assigned to oxidized lipids. The bromination resistant minor fraction of free radical centres with small g factor might be associated with the pigment content of the samples.  相似文献   

12.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

13.
Nitrosamines are carcinogenic and mutagenic only after metabolic activation via endoplasmic reticulum bound mixed function oxidase enzyme systems. Rencently a new photochemical process has been discovered by which nitrosamines are converted into unknown mutagenic compounds by irradiation with long wavelength UV light (> 335 nm) in the presence of phosphate ion at neutral pH. The mutagenic activity is detected by Ames Salmonella Typhimurium strain TA100 in the absence of rat liver microsomes. We have shown that mutagen production with nitrosomorpholine is inhibited in the presence of light by various spin trapping agents (N-t-butyl-phenylnitrone, etc.). Concurrent with this inhibition a stable free radical signal has been detected whose kinetics of formation is similar to the time course of mutagen formation during irradiation in the absence of spin trap. The free radical signal is formed only when phosphate or similar ions are present in the reaction mixture. Monomethylphosphate and dimethylphosphate can substitute for phosphate ion but with small ESR signals and mutagen formation. Trimethylphosphate gives a weak, time independent ESR signal and does not cause mutagen formation. The ESR splitting constants (aN and aH) for signals generated with each of the different phosphate species show differences which suggest that these ions may be components of some intermediate free radical species that is involved in stable mutagen formation. Arsenate ion inhibits mutagen formation in the presence of phosphate but is able in the absence of phosphate to form a ESR signal similar to that observed with phosphate ion.  相似文献   

14.
Electron spin lattice relaxation times (T1) and the phase memory times (Tm) were obtained for the synthetic melanin system from 3-hydroxytyrosine (dopa) by means of electron spin echo spectroscopy at 77 degrees K. Saturation behavior of the ESR spectra of melanins in melanin-containing tissue and of the synthetic melanin was also determined at the same temperature. The spin lattice relaxation time and the spectral diffusion time of the synthetic melanin are very long (4.3 ms and 101 microseconds, respectively, in the solid state), and the ESR signal saturates readily at low microwave powers. On the other hand, ESR spectra of natural melanins from the tissues chosen for this study, as well as those of synthetic melanins which contain Fe3+ of g = 4.3 and Mn2+ of g = 2, are relatively difficult to saturate compared with samples without such metal ions. These results show clearly that a large part of those two metal ions in sites responsible for the ESR spectral components with these particular g values are coordinated to melanin in melanin-containing tissue, and modify the magnetic relaxation behavior of the melanin. Accumulations of these metal ions in melanins are different from system to system, and they increase in the order: hair (black), retina and choroid (brown), malignant melanoma of eye and skin, and lentigo and nevus of skin.  相似文献   

15.
Although many animals use carotenoids to produce bright yellow, orange, and red colors, an increasing number of studies have found that other pigments, such as melanins, may also be used to produce bright colors. Yet, almost nothing is known about the evolutionary history of this colorful melanin use. We used reflectance spectrometry to determine whether colors in New World orioles were predominantly due to carotenoids, colorful melanins, or a mixture of both. We then used ancestral state reconstruction to infer the directionality of any pigment changes and to test for phylogenetic signal. We found that three oriole taxa likely switched from carotenoid- to melanin-based colors. Several other oriole taxa apparently gained localized melanin coloration, or had coloration that seemed to be produced by a mixture of carotenoids and melanins. We also found little phylogenetic signal on the use of carotenoids or melanins to produce color. However, all pigment changes occurred within one of three major clades of the oriole genus, suggesting there may be signal at deeper phylogenetic levels. These repeated independent switches between carotenoid and melanin colors are surprising in light of the important signaling role that color pigments (especially carotenoids) are thought to play across a wide range of taxa.  相似文献   

16.
Prostaglandin synthase is a multi-enzyme complex which catalyzes the oxygenation of arachidonic acid to the various prostaglandins. During the oxygenation, the enzyme is self-deactivated and, on the basis of ESR data, it has been proposed to form a self-destructive free radical. The free radical was suggested to form from the oxygen lost from prostaglandin G2 during its reduction to prostaglandin H2, and the destructive species was therefore thought to be an oxygen-centered free radical, tentatively identified as the hydroxy radical. We have reinvestigated this ESR signal (g = 2.005) and have concluded, with the aid of the known ESR parameters for the hydroxy and other oxygen-centered free radicals, that the free radical formed during the oxygenation is neither a hydroxy nor any known oxygen-centred radical. Prostaglandin synthase is thought to be a hemoprotein, so this unknown ESR signal was compared with the previously observed free radical formed by the reaction of H2O2 with methemoglobin. This comparison indicates that the free radical formed by the reaction of prostaglandin G2 with ram seminal vesicles is hemoprotein-derived and may be formed by the oxidation of an amino acid(s) located near the iron of the heme.  相似文献   

17.
A number of transition metal ions with a wide distribution in biological systems, e.g., Cu2+, Co2+ and Zn2+, are shown to affect markedly the chemical properties of melanins formed by the tyrosinase-catalysed oxidation of dopa. Acid decarboxylation and permanganate degradation provide evidence that melanins prepared in the presence of metal ions contain a high content of carboxyl groups arising from the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DICA) into the pigment polymer. Naturally occurring melanins from cephalopod ink and B16 mouse melanoma were found to be much more similar to melanins prepared in the presence of metal ions than to standard melanins prepared in the absence of metal ions. These results suggest that the presence of carboxylated indole units in natural melanins is probably due to the intervention in the biochemical pathway of metal ions which, as recently shown, catalyse the formation of DICA versus 5,6-dihydroxyindole in the rearrangement of dopachrome.  相似文献   

18.
The mechanism of bacterioviridin photochemical oxidation has been studied by the methods of ESR, flash-photolysis and low-temperature spectrophotometry. ESR spectrum of pigment cation-radical, a singlet line with H=11 G, g = 2.0027, has been recorded. The bands with maxima at 370, 470, 525, 590, 840 nm correspond to bacterioviridin cation -- radical in the absorption spectra. When -- benzoquinone is used as an electron acceptor with excitation light 640 nm the product of bacterioviridin irreversible oxidation is formed with the absorption band maximum 760 nm and absorption between 350 and 370 nm. It is suggested that this product is of double-oxidized non-radical nature and the mechanism of its formation through oxidation of the pigment cation-radical is discussed. The regeneration reaction of double-oxidized bacterioviridin up to cation-radical form in the presence of triphenylamine as a reducing agent has been carried out. The rate constants of cation-radical decay in the dark and desactivation of triplet state have the following values: K1=(1,64+/-0,15)-10(3) sec-1, K2=(13+/-2,0)-10(3) sec-1 correspondingly. The activation energy of the radical decay in the dark is Eact =(13,2-0,5) kcal/mole.  相似文献   

19.
It has been shown by microcalorimetry that UV-irradiation cardinally alters the temperature dependence of heat capacity of a collagen solution and decreases the enthalpy of collagen heat denaturation. By using the method of electron spin resonance (ESR), it was found that the primary products of UV-irradiated acid-soluble collagen are the atomic hydrogen and the anion radical of acetic acid. The latter, under the influence of long-wavelength UV light, is transformed into the methyl radical, which interacts with acetic acid to produce acetic acid radical. The above free radicals interact with the collagen molecule, as a result of which seven superfine components with the split of deltaH = 1.13 mT are obtained in the ESR spectrum. It is assumed that this spectrum is related to the free radical that occurred in the proline residue of the collagen molecule. In this particular case, this is a major structural defect in the triple helix of collagen, which results in instability of the macromolecule.  相似文献   

20.
The anaerobic enzymatic one-electron reduction of uroporphyrin I (in the absence of light) by the ferredoxin/ferredoxin:NADP+ oxidoreductase system was investigated using NADPH as the source of reducing equivalents. The porphyrin anion free radical metabolite formed by one-electron reduction of the parent molecule was detected with ESR spectroscopy. The ESR spectrum exhibited a singlet (g = 2.0021) with a 5.4-G peak-to-peak linewidth. The reduction process was also investigated under aerobic conditions. The reduction of molecular oxygen to superoxide anion radical by the porphyrin anion radical was demonstrated by using the ESR technique of spin trapping. The ESR spectra of the spin-trapped oxygen-derived radicals were superoxide dismutase-sensitive and catalase-insensitive, supporting the assignment of the trapped radical to the superoxide anion radical. These aerobic experiments demonstrate electron transfer from the porphyrin anion radical to molecular oxygen. The anaerobic reduction of Photofrin II by hepatic microsomes and the ferredoxin/ferredoxin:NADP+ oxidoreductase system to a porphyrin anion radical was also investigated. Free radical formation by ferredoxin: NADP+ oxidoreductase is totally dependent upon ferredoxin. The ESR spectrum of this porphyrin free radical also exhibited a singlet (g = 2.0026) with a 15-G peak-to-peak linewidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号