首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microneme protein 4 is involved in cell binding by the important parasite Toxoplasma gondii. We present here the backbone and side-chain assignments of the first two apple domains together with a new graphical aid for their assignment using NMRView. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Plasmodium vivax malaria is geographically the most widely distributed and prevalent form of human malaria. The development of drug resistance by the parasite to existing drugs necessitates higher focus to explore and identify new drug targets. Plasmodial proteases have key roles in parasite biology and are involved in nutritional uptake, egress from infected reticulocytes, and invasion of the new target erythrocytes. Serine repeat antigens (SERA) of Plasmodium are parasite proteases that remain attractive drug targets and are important vaccine candidates due to their high expression profiles in the blood stages. SERA proteins have a unique putative papain-like cysteine protease motif that has either serine or cysteine in its active site. In P. vivax, PvSERA4 is the highest transcribed member of this multigene family. In this study, we have investigated the genetic polymorphism of PvSERA4 central protease domain and deduced its 3D model by homology modeling and also performed MD simulations to acquire refined protein structure. Sequence analysis of protease domain of PvSERA4 from Indian field isolates reveals that the central domain is highly conserved. The high sequence conservation of the PvSERA4 enzyme domain coupled with its high expression raises the possibility of it having a critical role in parasite biology and hence, being a reliable target for new selective inhibitor-based antimalarial chemotherapeutics. The 3D model showed the presence of an unusual antiparallel Beta hairpin motif between catalytic residues similar to hemoglobin binding motif of Plasmodial hemoglobinases. Our PvSERA4 model will aid in designing structure-based inhibitors against this enzyme.  相似文献   

3.
Cai H  Kuang R  Gu J  Wang Y 《Current Genomics》2011,12(6):417-427
Malaria continues to be one of the most devastating global health problems due to the high morbidity and mortality it causes in endemic regions. The search for new antimalarial targets is of high priority because of the increasing prevalence of drug resistance in malaria parasites. Malarial proteases constitute a class of promising therapeutic targets as they play important roles in the parasite life cycle and it is possible to design and screen for specific protease inhibitors. In this mini-review, we provide a phylogenomic overview of malarial proteases. An evolutionary perspective on the origin and divergence of these proteases will provide insights into the adaptive mechanisms of parasite growth, development, infection, and pathogenesis.B.  相似文献   

4.
Persistent hurdles impede the successful determination of high-resolution crystal structures of eukaryotic integral membrane proteins (IMP). We designed a high-throughput structural genomics oriented pipeline that seeks to minimize effort in uncovering high-quality, responsive non-redundant targets for crystallization. This “discovery-oriented” pipeline sidesteps two significant bottlenecks in the IMP structure determination pipeline: expression and membrane extraction with detergent. In addition, proteins that enter the pipeline are then rapidly vetted by their presence in the included volume on a size-exclusion column—a hallmark of well-behaved IMP targets. A screen of 384 rationally selected eukaryotic IMPs in baker’s yeast Saccharomyces cerevisiae is outlined to demonstrate the results expected when applying this discovery-oriented pipeline to whole-organism membrane proteomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Franklin A. Hays and Zygy Roe-Zurz have contributed equally to this work.  相似文献   

5.
Only a few cold-adapted halophilic proteases have been reported. Here, the gene mcp03 encoding a cold-adapted halophilic protease MCP-03 was cloned from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913, which contains a 2,130-bp ORF encoding a novel subtilase precursor. The recombinant MCP-03, expressed in Escherichia coli BL21 and purified from fermented broth, is a multi-domain protein with a catalytic domain and two PPC domains. Compared to mesophilic subtilisin Carlsberg, MCP-03 had characteristics of a typical cold-adapted enzyme (e.g., higher activity at low temperatures, lower optimum temperature and higher thermolability). MCP-03 also exhibited good halophilic ability with maximal activity at 3 M NaCl/KCl and good stability in 3 M NaCl. Deletion mutagenesis showed that the C-terminal PPC domains were unnecessary for enzyme secretion but had an inhibitory effect on MCP-03 catalytic efficiency and were essential for keeping MCP-03 thermostable. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. X.-L. Chen and B.-Q. Yan contributed equally to this work.  相似文献   

6.
Our current understanding of migration routes of many birds is limited and researchers have employed various methods to determine migratory patterns. Recently, parasites have been used to track migratory birds. The objective of this study was to determine whether haemosporidian parasite lineages detect significant geographic structure in common yellowthroats (Geothlypis trichas). We examined liver tissue or blood from 552 birds sampled from multiple locations throughout the continental United States, southern Canada, and the Bahamas. We found a 52.7% overall prevalence of haematozoan infection. We identified 86.1% of these infections to genus: 81% were Plasmodium; 5% were Haemoproteus; and 0.1% were Leucocytozoon. There were significant differences in the prevalence of different parasite genera among regions (χ2 = 36.82, P < 0.0001) and in the proportion of Plasmodium infections versus other parasites among regions (χ2 = 35.52, P < 0.0001). Sequence information identified three Haemoproteus lineages, two Leucocytozoon lineages, and thirteen Plasmodium lineages. Due to the low number of Haemoproteus and Leucocytozoon, only Plasmodium lineages were used in the geographic comparison of lineages. Six Plasmodium lineages were found in eight or more birds and the prevalence of these varied significantly among regions (χ2 = 172.33, P < 0.0001). Additionally, 45 juvenile birds were sampled to determine what parasites could be obtained in the breeding grounds and we found only one lineage. In conclusion, parasite lineages show some geographic structure, with some lineages being more geographically specific than others, but are not useful for determining migratory connectivity in this species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

7.
Summary Plasmodium falciparum is the causative agent of malaria tropica. Due to the increasing resistance towards the commonly used plasmodicidal drugs there is an urgent need to identify and assess new targets for the chemotherapeutic intervention of parasite development in the human host. It is established thatP. falciparum-infected erythrocytes are vulnerable to oxidative stress, and therefore efficient antioxidative systems are required to ensure parasite development within the host cell. The thioredoxin and glutathione redox systems represent two powerful means to detoxify reactive oxygen species and this article summarizes some of the recent work which has led to a better understanding of these systems in the parasite and will help to assess them as potential targets for the development of new chemotherapeutics of malaria.Abbreviation BSO L-buthionine-(S,R)-sulphoximdne  相似文献   

8.
9.
Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.  相似文献   

10.
Microneme protein complexes are important for invasion of host cells by Toxoplasma gondii. We report the resonance assignment of the galectin-like domain of microneme protein 1 in complexes with the second and third EGF domains from microneme protein 6. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Arabidopsis thaliana encodes 56 subtilisin-like serine proteases (subtilases), and some are involved in the proteolytic processing of plant peptide hormones. Here, we have investigated the role of one subtilase, AtSBT5.4, in whole plant physiology by examining gain- or loss-of-function phenotypes. Knockouts of AtSBT5.4 had no apparent phenotype; however, overexpression produced a clavata-like phenotype with fasciated inflorescence stems and compounded terminal buds. Production of the phenotype depended on the enzymatic activity of the subtilase, because substitution of serine at the active site abolished the overexpression phenotype. When AtSBT5.4 was overexpressed in a clavata3 mutant background, a novel phenotype was produced suggesting that AtSBT5.4 interacts with the clavata signaling pathway. However, AtSBT5.4 did not cleave CLAVATA3 (CLV3) or a fluorogenic peptide representing the putative cleavage site in CLV3 under in vitro conditions suggesting that the interaction in vivo does not involve the cleavage of CLV3. Overexpression of AtSBT5.4 in a wuschel (wus) background suppressed the AtSBT5.4 overexpression phenotype indicating that WUS function is required for the AtSBT5.4 overexpression phenotype. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Site-specific recombination systems are becoming an important tool for the genetic modification of crop plants. Here we report the functional expression of the Streptomyces phage-derived phiC31 recombinase (integrase) in wheat. T-DNA constructs containing a phiC31 integrase transgene were stably transformed into wheat plants via particle gun bombardment. A plant-virus-based assay system was used to monitor the site-specific recombination activity of the recombinant integrase protein in vivo. We established several independent doubled haploid (DH) inbred lines that constitutively express an active integrase enzyme without any apparent detrimental effects on plant growth and development. The potential of phiC31 integrase expression in crop plants related to transgene control technologies or hybrid breeding systems is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. M. Rubtsova and K. Kempe contributed equally to the paper.  相似文献   

13.
14.
MicroRNAs (miRNAs) are small RNA molecules recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data. We are interested in the identification of miRNAs in Phaseolus vulgaris (common bean) to uncover different plant strategies to cope with adverse conditions and because of its relevance as a crop in developing countries. Here we present the identification of conserved and candidate novel miRNAs in P. vulgaris present in different organs and growth conditions, including drought, abscisic acid treatment, and Rhizobium infection. We also identified cDNA sequences in public databases that represent the corresponding miRNA precursors. In addition, we predicted and validated target mRNAs amongst reported EST and cDNAs for P. vulgaris. We propose that the novel miRNAs present in common bean and other legumes, are involved in regulation of legume-specific processes including adaptation to diverse external cues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Plasmepsins, a family of aspartic proteases of Plasmodium species, are known to participate in a wide variety of cellular processes essential for parasite survival. Therefore, the plasmepsins of malaria parasites have been recognized as attractive antimalarial drug targets. Although the plasmepsins of P. falciparum have been extensively characterized, the plasmepsins of P. vivax are currently not well known. To expand our understanding of the plasmepsins of P. vivax, we characterized plasmepsin 4 of P. vivax (PvPM4). The bacterially expressed recombinant PvPM4 was insoluble, but it was easily refolded into a soluble protein. The processing of PvPM4 into a mature enzyme occurred through autocatalytic activity under acidic conditions in a pepstatin A-sensitive manner, in which process a portion of prodomain was essential for correct folding. PvPM4 could hydrolyze native human hemoglobin at acidic pHs, but preferred denatured hemoglobin as a substrate. PvPM4 acted synergistically with vivapain-2 and vivapain-3, cysteine proteases of P. vivax, in the hydrolysis of hemoglobin. The vivapains also mediated processing of PvPM4 into a mature enzyme. These results collectively suggest that PvPM4 is an active hemoglobinase of P. vivax that works collaboratively with vivapains to enhance the parasite’s ability to hydrolyze hemoglobin.  相似文献   

16.
Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium (75Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin–selenide adduct in the culture medium. Addition of selenium in the form of selenite or l-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Changes in gene expression contribute to reproductive isolation of species, adaptation, and development and may impact the genetic fate of duplicated genes. African clawed frogs (genus Xenopus) offer a useful model for examining regulatory evolution, particularly after gene duplication, because species in this genus are polyploid. Additionally, these species can produce viable hybrids, and expression divergence between coexpressed species-specific alleles in hybrids can be attributed exclusively to cis-acting mechanisms. Here we have explored expression divergence of a duplicated heterodimer composed of the recombination activating genes 1 and 2 (RAG1 and RAG2). Previous work identified a phylogenetically biased pattern of pseudogenization of RAG1 wherein one duplicate—RAG1β—was more likely to become a pseudogene than the other one—RAG1α. In this study we show that ancestral expression divergence between these duplicates could account for this. Using comparative data we demonstrate that regulatory divergence between species and between duplicated genes varies significantly across tissue types. These results have implications for understanding of variables that influence pseudogenization of duplicated genes generated by polyploidization, and for interpretation of the relative contributions of cis versus trans mechanisms to expression divergence at the cellular level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of α and β subunits. Here we present the first characterization of a plant glucosidase II α subunit at the molecular level. Expression of the Arabidopsis α subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe α− or αβ−deficient mutants, but with a lower efficiency in the last case. Inactivation of the α subunit in a temperature sensitive Arabidopsis mutant blocked N-glycan processing after a first trimming by glucosidase I and strongly affected seedling development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Cecilia D’Alessio and Thomas Paccalet have equal contributions to this work An erratum to this article can be found at  相似文献   

19.
Although Prochlorococcus isolates possess the smallest genomes of any extant photosynthetic organism, this genus numerically dominates vast regions of the world’s subtropical and tropical open oceans and has evolved to become an important contributor to global biogeochemical cycles. The sequencing of 12 Prochlorococcus genomes provides a glimpse of the extensive genetic heterogeneity and, thus, physiological potential of the lineage. In this study, we present an up-to-date comparative analysis of major proteins of the photosynthetic apparatus in 12 Prochlorococcus genomes. Our analyses reveal a striking diversity within the Prochlorococcus lineage in the major protein complexes of the photosynthetic apparatus. The heterogeneity that has evolved in the photosynthetic apparatus suggests versatility in strategies for optimizing photosynthesis under conditions of environmental variability and stress. This diversity could be particularly important in ensuring the survival of a lineage whose individuals have evolved minimal genomes and, thus, relatively limited repertoires for responding to environmental challenges. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号