首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.  相似文献   

2.
The Tec family kinases are tyrosine kinases that function primarily in hematopoietic cells. The catalytic activity of the Tec kinases is positively influenced by the regulatory domains outside of the kinase domain. The current lack of a full-length Tec kinase structure leaves a void in our understanding of how these positive regulatory signals are transmitted to the kinase domain. Recently, a conserved structure within kinases, the ‘regulatory spine’, which assembles and disassembles as a kinase switches between its active and inactive states, has been identified. Here, we define the residues that comprise the regulatory spine within Tec kinases. Compared to previously characterized systems, the Tec kinases contain an extended regulatory spine that includes a conserved methionine within the C-helix and a conserved tryptophan within the Src homology 2-kinase linker of Tec kinases. This extended regulatory spine forms a conduit for transmitting the presence of the regulatory domains of Tec kinases to the catalytic domain. We further show that mutation of the gatekeeper residue at the edge of the regulatory spine stabilizes the regulatory spine, resulting in a constitutively active kinase domain. Importantly, the regulatory spine is preassembled in this gatekeeper mutant, rendering phosphorylation on the activation loop unnecessary for its activity. Moreover, we show that the disruption of the conserved electrostatic interaction between Bruton's tyrosine kinase R544 on the activation loop and Bruton's tyrosine kinase E445 on the C-helix also aids in the assembly of the regulatory spine. Thus, the extended regulatory spine is a key structure that is critical for maintaining the activity of Tec kinases.  相似文献   

3.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

4.
Joseph RE  Min L  Andreotti AH 《Biochemistry》2007,46(18):5455-5462
Tec family nonreceptor tyrosine kinases are key immunological enzymes that control processes that range from T and B cell development to reorganization of the actin cytoskeleton. The full-length Tec kinases have been resistant to crystallization. This lack of structural data and the paucity of in vitro biochemical data for this kinase family leave a void in our understanding of Tec kinase regulation. In this report we have used interleukin-2 tyrosine kinase (Itk) as a model system to gain insight into the regulatory apparatus of the Tec kinases. Use of a quantitative in vitro kinase assay has uncovered an essential role for the short linker region flanked by the SH2 and kinase domains of Itk in positively regulating Itk catalytic activity. The precise residues that allosterically regulate Itk are conserved among Tec kinases, pointing to the conserved nature of this regulatory mechanism within the family. These findings indicate that Tec kinases are not regulated in the same manner as the Src kinases but rather share some of the regulatory features of Csk instead.  相似文献   

5.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

6.
Joseph RE  Min L  Xu R  Musselman ED  Andreotti AH 《Biochemistry》2007,46(18):5595-5603
During T cell signaling, Itk selectively phosphorylates a tyrosine within its own SH3 domain and a tyrosine within PLCgamma1. We find that the remote SH2 domain in each of these substrates is required to achieve efficient tyrosine phosphorylation by Itk and extend this observation to two other Tec family kinases, Btk and Tec. Additionally, we detect a stable interaction between the substrate SH2 domains and the kinase domain of Itk and find that addition of specific, exogenous SH2 domains to the in vitro kinase assay competes directly with substrate phosphorylation. On the basis of these results, we show that the kinetic parameters of a generic peptide substrate of Itk are significantly improved via fusion of the peptide substrate to the SH2 domain of PLCgamma1. This work is the first characterization of a substrate docking mechanism for the Tec kinases and provides evidence of a novel, phosphotyrosine-independent regulatory role for the ubiquitous SH2 domain.  相似文献   

7.
Tec is the prototypic member of a family of intracellular tyrosine kinases that includes Txk, Bmx, Itk, and Btk. Tec family kinases share similarities in domain structure with Src family kinases, but one of the features that differentiates them is a proline-rich region (PRR) preceding their Src homology (SH) 3 domain. Evidence that the PRR of Itk can bind in an intramolecular fashion to its SH3 domain and the lack of a regulatory tyrosine in the C terminus indicates that Tec kinases must be regulated by a different set of intramolecular interactions to the Src kinases. We have determined the solution structure of the Tec SH3 domain and have investigated interactions with its PRR, which contains two SH3-binding sites. We demonstrate that in vitro, the Tec PRR can bind in an intramolecular fashion to the SH3. However, the affinity is lower than that for dimerization via reciprocal PRR-SH3 association. Using site-directed mutagenesis we show that both sites can bind the Tec SH3 domain; site 1 (155KTLPPAP161) binds intramolecularly, while site 2 (165KRRPPPPIPP174) cannot and binds in an intermolecular fashion. These distinct roles for the SH3 binding sites in Tec family kinases could be important for protein targeting and enzyme activation.  相似文献   

8.
To examine the interactions between Src homology,domains and the tyrosine kinase catalytic domain of v-Src, various combinations of domains have been expressed in bacteria as fusion proteins. Constructs containing the isolated catalytic domain, SH2 + catalytic domain, and SH3 + SH2 + catalytic domains were active in autophosphorylation assays. For the catalytic domain of v-Src, but not for v-Abl, addition of exogenous Src SH3-SH2 domains stimulated the autophosphorylation activity. In contrast to results for autophosphorylation, constructs containing Src homology domains were more active towards a synthetic peptide substrate than the isolated catalytic domain. The ability of the SH2 and SH3 domains of v-Src to stabilize an active enzyme conformation was also confirmed by refolding after denaturation in guanidinium hydrochloride. Collectively the data suggest that, in addition to their roles in intermolecular protein-protein interactions, the Src homology regions of v-Src exert a positive influence on tyrosine kinase function, potentially by maintaining an active conformation of the catalytic domain.  相似文献   

9.
The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.  相似文献   

10.
The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2-kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2-kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2-kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.  相似文献   

11.
The HIV-1 Nef virulence factor interacts with multiple host cell-signaling proteins. Nef binds to the Src homology 3 domains of Src family kinases, resulting in kinase activation important for viral infectivity, replication, and MHC-I down-regulation. Itk and other Tec family kinases are also present in HIV target cells, and Itk has been linked to HIV-1 infectivity and replication. However, the molecular mechanism linking Itk to HIV-1 is unknown. In this study, we explored the interaction of Nef with Tec family kinases using a cell-based bimolecular fluorescence complementation assay. In this approach, interaction of Nef with a partner kinase juxtaposes nonfluorescent YFP fragments fused to the C terminus of each protein, resulting in YFP complementation and a bright fluorescent signal. Using bimolecular fluorescence complementation, we observed that Nef interacts with the Tec family members Bmx, Btk, and Itk but not Tec or Txk. Interaction with Nef occurs through the kinase Src homology 3 domains and localizes to the plasma membrane. Allelic variants of Nef from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication, but not that of a Nef-defective mutant. Nef induced constitutive Itk activation in transfected cells that was sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family and suggest that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle.  相似文献   

12.
SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.  相似文献   

13.
IL-2 inducible T-cell kinase (Itk) is a Tec family non-receptor tyrosine kinase involved in signaling downstream of the T-cell receptor. Itk contains an amino-terminal Pleckstrin Homology (PH) domain that binds phosphatidylinositol (3,4,5)-trisphosphate, recruiting Itk to the plasma membrane upon T-cell receptor activation. In addition to phosphoinositide binding, accumulating data suggest that the Itk PH domain likely mediates additional interactions outside of the phosphoinositide ligand binding pocket. The structural basis for additional PH domain functions remains elusive because of the poor recombinant expression and in vitro solution behavior of the Itk PH domain. Here, we determine that the lone α-helix in the Itk PH domain is responsible for the poor solution properties and that mutation of just two residues in the Itk α-helix to the corresponding amino acids in Btk or Tec dramatically improves the soluble recombinant expression and solution behavior of the Itk PH domain. We present this double mutant as a valuable tool to characterize the structure and function of the Itk PH domain. It is also interesting to note that the precise sites of mutation identified in this study appear as somatic mutations associated with cancerous tissue. Collectively, the findings suggest that the two helical residues in the Itk PH domain may serve an important and unique structural role in wild-type Itk that differentiates this tyrosine kinase from its related family members.  相似文献   

14.
The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X‐ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src‐family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src‐family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher‐order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra‐ and intermolecular binding assays of proteins containing the domains.  相似文献   

15.
Itk, a Tec family tyrosine kinase, acts downstream of Lck and phosphatidylinositol 3'-kinase to facilitate T cell receptor (TCR)-dependent calcium influxes and increases in extracellular-regulated kinase activity. Here we demonstrate interactions between Itk and crucial components of TCR-dependent signaling pathways. First, the inositide-binding pocket of the Itk pleckstrin homology domain directs the constitutive association of Itk with buoyant membranes that are the primary site of TCR activation and are enriched in both Lck and LAT. This association is required for the transphosphorylation of Itk. Second, the Itk proline-rich region binds to Grb2 and LAT. Third, the Itk Src homology (SH3) 3 and SH2 domains interact cooperatively with Syk-phosphorylated SLP-76. Notably, SLP-76 contains a predicted binding motif for the Itk SH2 domain and binds to full-length Itk in vitro. Finally, we show that kinase-inactive Itk can antagonize the SLP-76-dependent activation of NF-AT. The inhibition of NF-AT activation depends on the Itk pleckstrin homology domain, proline-rich region, and SH2 domain. Together, these observations suggest that multivalent interactions recruit Itk to LAT-nucleated signaling complexes and facilitate the activation of LAT-associated phospholipase Cgamma1 by Itk.  相似文献   

16.
The Tec family kinase Itk plays a critical role in signal transduction downstream of the T cell antigen receptor and has been implicated in the activation of phospholipase C-gamma1, a key regulator of calcium mobilization and extracellular signal-regulated kinase (ERK) activation. We have shown previously that Itk is regulated by an activating transphosphorylation event in which Tyr-511 in the kinase domain is phosphorylated by Lck (Heyeck, S. D., Wilcox, H. M., Bunnell, S. C., and Berg, L. J. (1997) J. Biol. Chem. 272, 25401-25408). In this study, we present evidence for another mode of regulation for Itk, the autophosphorylation of Tyr-180 in the Src homology 3 (SH3) domain. To investigate the role of Itk trans- and autophosphorylation in T cell signaling, a retroviral transduction system was used to introduce different versions of Itk into Itk-deficient primary T cells. We report that Itk mutated at either the trans- or the autophosphorylation site is unable to fully restore cytokine production and ERK activation in the Itk-deficient cells; Itk-Y511F is severely defective, whereas Itk-Y180F has partial activity. Because phosphorylation at Tyr-180 is predicted to interfere with ligand binding by the SH3 domain, an SH3 point mutant that cannot bind ligand was also examined and found to be unable to restore function to the Itk-/- cells. These data provide new insights into the complex regulation of Itk in primary T cells.  相似文献   

17.
The Tec family of tyrosine kinases transduces signals from antigen and other receptors in cells of the hematopoietic system. In particular, interleukin-2 inducible T cell kinase (Itk) plays an important role in modulating T cell development and activation. Itk is activated by receptors via a phosphatidylinositol 3-kinase-mediated pathway, which results in recruitment of Itk to the plasma membrane via its pleckstrin homology domain. We show here that membrane localization of Itk results in the formation of clusters of at least two molecules within 80 A of each other, which is dependent on the integrity of its pleckstrin homology domain. By contrast, the proline-rich region within the Tec homology domain, SH3 or SH2 domains, or kinase activity were not required for this event. More importantly, these clusters of Itk molecules form in distinct regions of the plasma membrane as only receptors that recruit phosphatidylinositol 3-kinase reside in the same membrane vicinity as the recruited Itk. Our results indicate that Itk forms dimers in the membrane and that receptors that recruit Itk do so to specific membrane regions.  相似文献   

18.
19.
Interaction between Btk TH and SH3 domain   总被引:1,自引:0,他引:1  
Okoh MP  Vihinen M 《Biopolymers》2002,63(5):325-334
Several mechanisms are involved in the regulation of cellular signaling. Bruton tyrosine kinase (Btk) of the Tec family contains in the Tec homology (TH) domain a proline-rich region (PRR) capable of interacting with several SH3 domains. The Btk has the SH3 domain adjacent to the TH domain. CD and fluorescence spectroscopy were used to study the binding of two peptides corresponding to segments in the PRR to the Btk SH3 domain. The peptide for the N-terminal half of the PRR binds specifically, whereas the other peptide had hardly any affinity. The TH domain has about four times lower affinity to the SH3 domain than the peptide, 17.0 vs 3.9 microM. The interaction was further tested with an SH3 domain construct that contained the PRR. The two peptides cannot compete for the binding to the extended protein and the TH domain has two times lower affinity to the extended SH3 domain. The intra- or intermolecular interaction between the TH and SH3 domain might have regulatory function also in the other Tec family members.  相似文献   

20.
The catalytic activity of protein tyrosine kinases is commonly regulated by domain-domain interactions. The C-terminal Src kinase (Csk) contains a catalytic domain and the regulatory SH3 and SH2 domains. Both the presence of the regulatory domains and binding of specific phosphotyrosine-containing proteins to the SH2 domain activate Csk. The structural basis for both modes of activation is investigated here. First, the SH3-SH2 linker is crucial for Csk activation. Mutagenic and kinetic studies demonstrate that this activation is mediated by a cation-pi interaction between Arg68 and Trp188. Second, Ala scanning and kinetic analyses on residues in the SH2-catalytic domain interface identify three functionally distinct types of residues in mediating the communication between the SH2 and the catalytic domains. Type I residues are important in mediating a ligand-triggered activation of Csk because their mutation severely reduces Csk activation by the SH2 domain ligand. Type II residues are involved in suppressing Csk activity, and their mutation activates Csk, but makes Csk less sensitive to activation by the SH2 ligand. Both type I and type II residues are likely involved in mediating SH2 ligand-triggered activation of Csk. Type III residues are those located in the SH2 domain whose mutation severely decreases Csk catalytic activity without affecting the SH2 ligand-triggered activation. These residues likely mediate SH2 activation of Csk regardless of SH2-ligand interaction. These studies lead us to propose a domain-domain communication model that provides functional insights into the topology of Csk family of protein tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号