首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ9‐tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor‐driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC‐sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin‐2, a microtubule‐binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis‐exposed fetuses, defining SCG10 as the first cannabis‐driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c‐Jun N‐terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.  相似文献   

3.
Marijuana is the most commonly abused illicit drug by pregnant women. Its major psychoactive constituent, Δ9‐THC (Δ9‐tetrahydrocannabinol), crosses the placenta and accumulates in the f?tus, potentially harming its development. In humans, marijuana use in early pregnancy is associated with miscarriage, a fetal alcohol‐like syndrome, as well as learning disabilities, memory impairment, and ADHD in the offspring. Classical studies in the 1970 s have reached disparate conclusions as to the teratogenic effects of cannabinoids in animal models. Further, there is very little known about the immediate effects of Δ9‐THC on early embryogenesis. We have used the chick embryo as a model in order to characterize the effects of a water‐soluble Δ9‐THC analogue, O‐2545, on early development. Embryos were exposed to the drug (0.035 to 0.35 mg/ml) at gastrulation and assessed for morphological defects at stages equivalent to 9–14 somites. We report that O‐2545 impairs the formation of brain, heart, somite, and spinal cord primordia. Shorter incubation times following exposure to the drug show that O‐2545 interferes with the initial steps of head process and neural plate formation. Our results indicate that the administration of the cannabinoid O‐2545 during early embryogenesis results in embryotoxic effects and serves to illuminate the risks of marijuana exposure during the second week of pregnancy, a time point at which most women are unaware of their pregnancies. Birth Defects Res (Part B) 83:477–488, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
5.
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet‐like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five‐step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti‐hyperglycaemic hormone‐Glp1 (glucagon‐like peptide 1) analogue Liraglutide with prolonged t½ and Exendin 4. The differentiated islet‐like 3D clusters expressed bonafide mature and functional β‐cell markers‐PDX1 (pancreatic and duodenal homoeobox‐1), C‐peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C‐peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non‐obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long‐term in vivo functionally viable islets from hESC.  相似文献   

6.
Introduction – Cannabis and cannabinoid based medicines are currently under serious investigation for legitimate development as medicinal agents, necessitating new low‐cost, high‐throughput analytical methods for quality control. Objective – The goal of this study was to develop and validate, according to ICH guidelines, a simple rapid HPTLC method for the quantification of Δ9‐tetrahydrocannabinol (Δ9‐THC) and qualitative analysis of other main neutral cannabinoids found in cannabis. Methodology – The method was developed and validated with the use of pure cannabinoid reference standards and two medicinal cannabis cultivars. Accuracy was determined by comparing results obtained from the HTPLC method with those obtained from a validated HPLC method. Results – Δ9‐THC gives linear calibration curves in the range of 50–500 ng at 206 nm with a linear regression of y = 11.858x + 125.99 and r2 = 0.9968. Conclusion – Results have shown that the HPTLC method is reproducible and accurate for the quantification of Δ9‐THC in cannabis. The method is also useful for the qualitative screening of the main neutral cannabinoids found in cannabis cultivars. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.  相似文献   

9.
10.
Microtubule turnover in the growing axons is required for directional axonal growth and synapse formation in the developing brain. In this issue of The EMBO Journal, Tortoriello et al ( 2014 ) show that the microtubule‐binding protein SCG10/stathmin‐2 is a specific molecular target for a CB1 receptor‐mediated effect of Δ9‐tetrahydrocannabinol (THC), the psychoactive ingredient of smoked marijuana, in the fetal brain. Considering the role of CB1 in modulating the specification and long‐distance migration of neurons in the perinatal brain, this study reveals an interesting mechanism potentially accounting for connectivity deficits during cortical development following exposure to CB1 agonists or THC during pregnancy.  相似文献   

11.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   

12.
Intrauterine hyperglycemic environment could harm the fetus making it more susceptible to develop postnatal glucose intolerance. A possible mechanism is compromise of the fetal pancreatic development. We previously found that a high sucrose low copper diabetogenic diet induces type 2 diabetes in the Cohen diabetic sensitive rats, but not in the Sabra control rats. However, oxidative stress was observed in the placenta and term fetal liver of diabetic and nondiabetic controls. We now investigated whether the fetal pancreas is affected by this diet and whether the effects result from oxidative stress, maternal hyperglycemia, or both. Term fetal pancreases were evaluated for morphology, beta cells, oxidative stress, apoptosis, and DNA methylation. There were no microscopic changes in hematoxylin and eosin stained sections and beta cells immunostaining in the pancreas of fetuses of both strains. Fetuses of the sensitive strain fed diabetogenic diet had significantly higher activity of superoxide dismutase and catalase, elevated levels of low molecular weight antioxidants, and more intense immunostaining for nuclear factor kappa‐B and hypoxia inducing factor‐1α. Both strains fed diabetogenic diet had increased immunostaining for Bcl‐2‐like protein and caspase 3 and decreased immunostaining for 5‐methylcytosine in their islets and acini. Our data suggest that maternal diabetogenic diet alters apoptotic rate and epigenetic steady states in the term fetal pancreas, unrelated to maternal diabetes. Maternal hyperglycemia further increases pancreatic oxidative stress, aggravating the pancreatic damage. The diet‐induced insults to the fetal pancreas may be an important contributor to the high susceptibility to develop diabetes following metabolic intrauterine insults  相似文献   

13.
To maintain islets survival and function is critical in successful pancreatic transplantation. Pancreatic progenitors cells (PPCs) with lineage potentials, giving rise to exocrine, endocrine, and duct cells, reside in developing and adult pancreas. As tissue-specific stem cells, they can produce pancreatic tissue-specific matrix factors to promote islets survival and function. The aim of our research was to investigate the protective effect of rat pancreatic?Cduodenal homeobox 1 (Pdx1)+/nestin+ PPCs on islets. In vitro, co-culturing islets with Pdx1+/nestin+ PPCs prolonged the former survival from 7 to 14?days. Furthermore, with high glucose (300.8?mg/dl) stimuli, the yield of insulin in co-cultures was significantly higher than that in control group (single islets group). In vivo, co-transplanting islets and Pdx1+/nestin+ PPCs for 3?days, the blood glucose of diabetic rat was significantly decreased to normal level and sustained for 2?weeks. Without Pdx1+/nestin+ PPCs in islets transplantation, hyperglycemia was reversed at day 7 and recovered at day 15. Pathology analysis showed that islets had remnants in co-transplantation at day 21, as complete graft rejection in alone islets transplantation. Our study showed that Pdx1+/nestin+ PPCs displayed the ability of preserving islets viability and function in vitro and prolonging their survival in vivo.  相似文献   

14.
15.
The aim of this study was to investigate the protective effect of ferulic acid at different doses (50 mg kg?1 alternative day and 50 mg kg?1 daily) on the streptozotocin (STZ)‐induced post‐diabetes rat testicular damage. Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg). Rats treated with ferulic acid were given once a day orally for 10 weeks, starting 3 days after STZ injection. Testis tissue and blood samples were collected for investigating biochemical analysis, antioxidant status, sperm parameters, and histopathological, immunohistochemical and apoptotic studies. Treatment with ferulic acid to diabetic rats significantly improved the body weight, testis weight, serum insulin level, serum testosterone level and sperm parameters (viability, motility and count). Histopathological study also revealed that ferulic acid‐treated diabetic rats showed an improved histological appearance. Our data indicated that significant reduction in the activity of apoptosis by using terminal deoxyuridine triphosphate nick end‐labelling and reduced expression of transforming growth factor‐β1 and interleukin‐1β in the testis tissue of ferulic acid‐treated diabetic rats. Conversely, it was also revealed that ferulic acid‐treated diabetic rats markedly enhanced the serine/threonine protein kinase protein expression in the testis tissue. Our result suggests that ferulic acid inhibits testicular damage in diabetic rats by declining oxidative stress. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse β‐cell lines, human islets and CB1R‐null (CB1R?/?) mice, we have now investigated the role of CB1Rs in modulating β‐cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP‐1‐mediated cAMP accumulation and insulin secretion as well as glucose‐stimulated insulin secretion in mouse β‐cell lines and human islets. In addition, silencing CB1R in mouse β cells resulted in an increased expression of pro‐insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in β cells lacking insulin receptor. Furthermore, CB1R?/? mice had increased pro‐insulin, GCK and GLUT2 expression in β cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve β‐cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to β‐cell function in type 2 diabetes.  相似文献   

17.
The D4 dopamine receptor belongs to the D2‐like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high‐affinity D4 receptor‐selective ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐[11C]methoxybenzamide ([11C] 2 ) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.  相似文献   

18.
Cardiovascular diseases such as myocardial ischaemia have a high fatality rate in patients with diabetes. This study was designed to expose the crosstalk between oxidative stress and AMPK, a vital molecule that controls biological energy metabolism, in myocardial ischaemia reperfusion injury (I/RI) in diabetic rats. Diabetes was stimulated in rats using streptozotocin injection. Rats were separated on random into control, control + I/R, Diabetes, Diabetes + I/R, Diabetes + I/R + N‐acetylcysteine and Diabetes + I/R + Vas2870 groups. Myocardial infarct size was determined, and the predominant Nox family isoforms were analysed. In vitro, the H9C2 cells were administered excess glucose and exposed to hypoxia/reoxygenation to mimic diabetes and I/R. The AMPK siRNA or AICAR was used to inhibit or activate AMPK expression in H9C2 cells, respectively. Then, myocardial oxidative stress and programmed cell death were measured. Diabetes or high glucose levels were found to aggravate myocardial I/RI or hypoxia/reoxygenation in H9C2 cells, as demonstrated by an increase in myocardial infarct size or lactate dehydrogenase levels, oxidative stress generation and induction of programmed cell death. In diabetic rat hearts, cardiac Nox1, Nox2 and Nox4 were all heightened. The suppression of Nox2 expression using Vas2870 or Nox2‐siRNA treatment in vivo or in vitro, respectively, protected diabetic rats from myocardial I/RI. AMPK gene knockout increased Nox2 protein expression while AMPK agonist decreased Nox2 expression. Therefore, diabetes aggravates myocardial I/RI by generating of Nox2‐associated oxidative stress in an AMPK‐dependent manner, which led to the induction of programmed cell death such as apoptosis, pyroptosis and ferroptosis.  相似文献   

19.
Human glucagon‐like peptide‐1 (hGLP‐1) and its mimetics have emerged as therapies for type 2 diabetes. However, clinical treatment of diabetes with hGLP‐1 is ineffective because of rapid DPPIV‐mediated hGLP‐1 degradation in the circulation. In this study, we investigated the protective effect of recombinant human glucagon‐like peptide‐1 (rhGLP‐1) treatment on STZ‐induced diabetic mice. Mice were treated daily with rhGLP‐1 (24 nmol/kg body weight) starting before or after STZ injection (40 mg/kg body weight) to induce diabetes. Mice pretreated with rhGLP‐1 before but not after STZ showed significantly reduced blood glucose levels (P < 0.05), increased oral glucose tolerance (area under the curve, 1740 ± 71.18 vs 2416 ± 205.6, P < 0.05). Furthermore, the bioproduct of lipid peroxidation, MDA, was reduced and SOD and GSH‐PX activities were enhanced globally and in pancreas of mice that received rhGLP‐1 pretreatment before STZ, when comparing with STZ‐treated mice. Finally, STZ‐induced pancreatic islet damage was rescued by rhGLP‐1 pretreatment. Taken together, the results of this study demonstrate that rhGLP‐1 pretreatment has a protective effect against STZ‐induced diabetes in mice. These findings suggest that the GLP‐1 pretreatment may be a new therapeutic strategy in the preventive and protective treatment during diabetes initiation and progression. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Polyenoylphosphatidylcholine (PPC: 100 or 300 mg kg?1 b.w., by gastric intubation for 30 days) produced a clearcut protection of the liver of rats treated with alloxan (150 mg kg?1 b.w., i.p.). The liver of rats treated with alloxan was characterized by hydropic dystrophy and lymphocytic infiltrations. Treatment with alloxan increased serum γ-GT and ALAT activities. The liver structure of rats treated with PPC did not differ from the liver of control animals. PPC normalized the biochemical abnormalities caused by the diabetes. The number of pancreatic islets and β/α; cell ratio decreased in the diabetic rats. A number of β-cells in this group did not contain granules. PPC prevented the decrease in the number of islets and the β/α; cell ratio in the pancreas of the diabetic rats. The intensity of staining of β-cell granules in the pancreas of PPC-treated rats had a position intermediate between the control and diabetic groups. Alloxan increased the blood glucose content where treatment with PPC decreased this. The results suggest that PPC acts as a cytoprotector in the liver and pancreas of rats with experimental diabetes induced by alloxan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号