首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.  相似文献   

3.
D-type cyclins are involved in the regulation of the G1/S transition of the cell cycle in various cell types cultured in vitro. Little is, however, known about the expression pattern and functional role of D-type cyclins in physiological processes in vivo. In this report, we studied whether the expression of murine D-type cyclins correlates with the states of mouse uterine cell proliferation in vivo. Time-course changes in cyclin D1 and D3 mRNA levels in the uterine tissues of immature mice primed with 17β-estradiol (E2) were examined by Northern blot hybridization. c-fos and thymidine kinase (TK) mRNA levels were also examined as markers for the transition from G0 to G1 and the onset of S phase, respectively. Cyclin D1 and D3 mRNAs were induced 2.5-fold between c-fos and TK mRNA peaks. The E2-induced cyclin D1 and D3 gene expressions were blocked by antiestrogens tamoxifen and ICI 182,780. We also investigated the effects of cycloheximide (CHX), a protein synthesis inhibitor, on cyclin D1 and D3 gene expressions. When CHX was treated alone, cyclin D3, but not cyclin D1, mRNA was immediately superinduced. The E2-induced cyclin D3 gene expression was shifted by approximately 6 h when CHX was pretreated 1 hr before E2 administration. Interestingly, the 3H-thymidine incorporation experiment showed that the mouse uterine cell cycle progression also shifted by 6 hr with pretreatment of CHX. The overall results suggest that both cyclin D1 and D3 mRNAs are constitutively expressed in uterine tissues and induced by E2 at G1 phase of the mouse uterine cell cycle. However, the superinducibility and temporal shift of cyclin D3 by CHX suggest that there is a different regulatory mechanism underlying cyclin D1 and D3 gene expressions in the mouse uterine cell cycle progression. Mol. Reprod. Dev. 46:450–458, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Cyclins D and E play critical roles during the G1 phase of mammalian cell division. Cyclin D1 expression is high and expected to play an important role during mouse brain development. However, in the present study, we found no difference in CNS morphology between cyclin D1 knockout (KO) and control wild-type mice at the ages of 1, 4 and 12 months. Analysis of protein expression in embryonic brains revealed that cyclin E is obviously increased in cyclin D1 KO mice at 13.5 days post coitum. At the same age a high level of cyclin D1 expression is detected in the embryonic brain of wild-type mice. The data indicate that enhanced cyclin E protein expression in cyclin D1 KO mice may obviate the role of cyclin D1 and contribute to the normal brain development of cyclin D1 KO mice.  相似文献   

5.
To investigate the expression, role and mechanism of action of long non‐coding RNA (lncRNA) ABHD11‐AS1 in endometrial carcinoma. The expression of lncRNA ABHD11‐AS1 was quantified by qRT‐PCR in human endometrial carcinoma (n = 89) and normal endometrial tissues (n = 27). LncRNA ABHD11‐AS1 was stably overexpressed or knocked‐down in endometrial carcinoma cell lines to examine the cellular phenotype and expression of related molecules. Compared to normal endometrial tissue, lncRNA ABHD11‐AS1 was significantly overexpressed in endometrial carcinoma. Overexpression of lncRNA ABHD11‐AS1 promoted the proliferation, G1‐S progression, invasion and migration of endometrial cancer cells; inhibited apoptosis; up‐regulated cyclin D1, CDK1, CDK2, CDK4, Bcl‐xl and VEGFA; and down‐regulated p16, while ABHD11‐AS1 down‐regulation has the opposite effect. RNA pull down demonstrated that lncRNA ABHD11‐AS1 binds directly to cyclin D1. Knockdown of cyclin D1 can reverse the effect of ABHD11‐AS1. Overexpression of lncRNA ABHD11‐AS1 increased the tumorigenicity and up‐regulated cyclin D1 in an in vivo model of endometrial cancer in nude mice. LncRNA ABHD11‐AS1 functions as an oncogene to promote cell proliferation and invasion in endometrial carcinoma by positively targeting cyclin D1.  相似文献   

6.
Although activated macrophages destroy cancer cells more effectively than normal cells, the facility to escape activated macrophages is a characteristic of tumor cells. One of the mechanisms responsible for the specific killing of tumor cells by macrophages is the production of the cytokine tumor necrosis factor alpha (TNF). Therefore, resistance to TNF may provide such cancer cells a selective advantage against host elimination. In the present work we explore the possibility that cyclin D1 overrides the cytostatic effect of TNF. We show that TNF induces p21(waf1) protein in malignant melanoma A375 cells and its binding to CDK2/4 and 6 proteins, and thereby inhibiting the activity of these complexes. This inhibition leads the cells to a G1 arrest. Overexpression of cyclin D1 in these cells makes them insensitive to TNF treatment with the recovery of CDK activity, however, is unable to overcome the inhibitory action of etoposide blocking the cells on G2/M. The bypass of TNF-induced G1 arrest seems to be related to the increase in the stability of cyclin D bound CDK complexes, increasing the total amount of CDK2/4 and 6 complexes and leading to a functional down titration of the p21(waf1) molecules. In these conditions the TNF-induced increase of p21(waf1) is not sufficient to inhibit the high amount of cyclin D-bound complexes. This hypothesis is supported by the fact that a reduction in the levels of p21(waf1) protein, induced by the expression of a mRNA antisense against p21(waf1), is also able to bypass of TNF-induced arrest. Our results confirm that p21(waf1) has an essential role in TNF-induced arrest and that the deregulation of cyclin D1 may be one of the mechanisms to escape physiological signals to restrict tumoral growth.  相似文献   

7.
The tumor suppressor p53 gene product is an essential component of the cytotoxic pathway triggered by DNA-damaging stimuli such as chemotherapeutic agents and ionizing radiation. We previously demonstrated that adenovirus-mediated wild-type p53 gene transfer could enhance the cytotoxic actions of chemotherapeutic drugs both in vitro and in vivo; however, the molecular mechanism of this chemosensitization is still unclear. Cyclin D1 is a major regulator of the progression of cells into the proliferative stage of the cell cycle. Here we show that infection with an adenovirus vector expressing the wild-type p53 gene (Ad-p53) caused an increase in cyclin D1 protein levels in human colorectal cancer cell lines DLD-1 and SW620; treatment with the anti-cancer drug adriamycin, however, down-regulated their cyclin D1 protein expression in a dose-dependent manner. The suppression of cyclin D1 expression following adriamycin treatment could be blocked by simultaneous Ad-p53 infection. Furthermore, DLD-1 and SW620 cells transfected with the cyclin D1 expression construct displayed increased sensitivity to adriamycin compared to that of the vector-transfected control. Our results suggest that ectopic wild-type p53 gene transfer results in increased cyclin D1 expression and, consequently, sensitizes human colorectal cancer cells to chemotherapeutic agents.  相似文献   

8.
Oncogene-induced senescence represents a key tumor suppressive mechanism. Here, we show that Ras oncogene-induced senescence can be mediated by the recently identified haploinsufficient tumor suppressor apoptosis-stimulating protein of p53 (ASPP) 2 through a novel and p53/p19Arf/p21waf1/cip1-independent pathway. ASPP2 suppresses Ras-induced small ubiquitin-like modifier (SUMO)-modified nuclear cyclin D1 and inhibits retinoblastoma protein (Rb) phosphorylation. The lysine residue, K33, of cyclin D1 is a key site for this newly identified regulation. In agreement with the fact that its nuclear localization is required for its oncogenic activity, we show that nuclear cyclin D1 is far more potent than wild-type (WT) cyclin D1 in bypassing Ras-induced senescence. Thus, this study identifies SUMO modification as a positive regulator of nuclear cyclin D1, and reveals a new way by which cell cycle entry and senescence are regulated.  相似文献   

9.
Abnormal airway smooth muscle cell (ASMC) proliferation and migration contribute significantly to increased ASM mass associated with asthma. MicroRNA (miR)-638 is a primate-specific miRNA that plays important roles in development, DNA damage repair, hematopoiesis, and tumorigenesis. Although it is highly expressed in ASMCs, its function in ASM remodeling remains unknown. In the current study, we found that in response to various mitogenic stimuli, including platelet-derived growth factor-two B chains (PDGF-BB), transforming growth factor β1, and fetal bovine serum, the expression of miR-638, as determined by quantitative real-time polymerase chain reaction (qRT-PCR), was significantly downregulated in the proliferative human ASMCs. Both gain- and loss-of-function studies were performed to study the role of miR-638 in ASMC proliferation and migration. We found that adenovirus-mediated miR-638 overexpression markedly inhibits ASMC proliferation and migration, while ablation of miR-638 by anti-miR-638 markedly increases cell proliferation and migration, as determined by WST-8 proliferation and scratch wound assays. Dual-luciferase reporter assay, qRT-PCR, and immunoblot analysis were used to investigate the effects of miR-638 on the expression of the downstream target genes in ASMCs. Our results demonstrated that miR-638 overexpression significantly reduced the expression of downstream target cyclin D1 and NOR1, both of which have been shown to be essential for cell proliferation and migration. Together, our study provides the first in vitro evidence highlighting the antiproliferative and antimigratory roles of miR-638 in human ASMC remodeling and suggests that targeted overexpression of miR-638 in ASMCs may provide a novel therapeutic strategy for preventing ASM hyperplasia associated with asthma.  相似文献   

10.
11.
N6-methyladenosine (m6A) is a well-known modification of RNA. However, as a key m6A methyltransferase, METTL16 has not been thoroughly studied in gastric cancer (GC). Here, the biological role of METTL16 in GC and its underlying mechanism was studied. Immunohistochemistry was used to detect the expression of METTL16 and relationship between METTL16 level and prognosis of GC was analysed. CCK8, colony formation assay, EdU assay and xenograft mouse model were used to study the effect of METTL16. Regulatory mechanism of METTL16 in the progression of GC was studied through flow cytometry analysis, RNA degradation assay, methyltransferase inhibition assay, RT-qPCR and Western blotting. METTL16 was highly expressed in GC cells and tissues and was associated with prognosis. In vitro and in vivo experiments confirmed that METTL16 promoted proliferation of GC cells and tumour growth. Furthermore, down-regulation of METTL16 inhibited proliferation by G1/S blocking. Significantly, we identified cyclin D1 as a downstream effector of METTL16. Knock-down METTL16 decreased the overall level of m6A and the stability of cyclin D1 mRNA in GC cells. Meanwhile, inhibition of methyltransferase activity reduced the level of cyclin D1. METTL16-mediated m6A methylation promotes proliferation of GC cells through enhancing cyclin D1 expression.  相似文献   

12.
Abnormal cell cycle events are increasingly becoming important attributes of neurodegenerative pathology. Pin1 is a crucial target of neurodegeneration in relation to its functions regarding these abnormal cell cycle events in neurons. Pin1 is majorly involved in many aspects of cell cycle regulation and it has also been suggested to have a neuroprotective function against neurodegenerative pathologies. Oxidative dysregulation of Pin1 affects not only normal tau regulation, eventually causing tangle formation, but also cell cycle regulation in neurons. Presence of cell cycle proteins has been shown in many neurodegenerative diseases. Importantly, many of these proteins have physical interactions with Pin1. Hence, understanding Pin1's role in abnormal cell cycle re-entry is critical in terms of finding new approaches for the future therapeutic options treating neurodegenerative pathologies. Here, we show that inhibition of Pin1 by its selective inhibitor juglone leads to up-regulation of cyclinD1, phospho-tau, and caspase 3, producing apoptosis in cultured rat hippocampal neurons. We also observed axonal retraction with a change in sub-cellular localizations of cyclins. Therefore, Pin1 dysregulation, in relation to its role in cell cycle regulation in neurons, may have profound effects in the progression of neurodegenerative pathology, making it a possible crucial target behind many neurodegenerative diseases.  相似文献   

13.
It is now apparent that apoptosis is closely linked to the control of cell cycle progression. During the G1 to S progression, cyclin D1, p53, and the cyclin dependent kinase inhibitors p21WAF1 and p27kip1 can play roles in induction of apoptosis. During the G2 and M phases, premature activation of Cdk1 can cause cells to enter mitotic catastrophe, which results in apoptosis. In this review we focus on factors acting during G1 and S, particularly cyclin D1, and their effects on cell growth, senescence and apoptosis. We emphasize that cyclin D1 can have diverse effects on cells depending on its level of expression, the specific cell type, the cell context and other factors. Possible mechanisms by which cyclin D1 exerts these diverse effects, via cyclin dependent kinase-dependent and -independent pathways, are discussed.  相似文献   

14.
The Wnt/β‐catenin signaling pathway regulates various aspects of development and plays important role in human carcinogenesis. Nemo‐like kinase (NLK), which is mediator of Wnt/β‐catenin signaling pathway, phosphorylates T‐cell factor/lymphoid enhancer factor (TCF/LEF) factor and inhibits interaction of β‐catenin/TCF complex. Although, NLK is known to be a tumor suppressor in Wnt/β‐catenin signaling pathway of colon cancer, the other events occurring downstream of NLK pathways in other types of cancer remain unclear. In the present study, we identified that expression of NLK was significantly up‐regulated in the HCCs compared to corresponding normal tissues in five selected tissue samples. Immunohistochemical analysis showed significant over‐expression of NLK in the HCCs. Targeted‐disruption of NLK suppressed cell growth and arrested cell cycle transition. Suppression of NLK elicited anti‐mitogenic properties of the Hep3B cells by simultaneous inhibition of cyclinD1 and CDK2. The results of this study suggest that NLK is aberrantly regulated in HCC, which might contribute to the mitogenic potential of tumor cells during the initiation and progression of hepatocellular carcinoma; this process appears to involve the induction of CDK2 and cyclin D1 and might provide a novel target for therapeutic intervention in patients with liver cancer. J. Cell. Biochem. 110: 687–696, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Lysophosphatidic acid (LPA) is a lipid growth factor that induces proliferation of fibroblasts by activating the cAMP response element binding protein (CREB). Here, we further investigated whether LPA induces proliferation of P19 cells, a line of pluripotent embryonic carcinoma cells. 5′-Bromo-2-deoxyuridine incorporation and cell viability assays showed that LPA stimulated proliferation of P19 cells. Immunoblot experiments with P19 cells revealed that the mitogen activated protein kinases, including p-ERK, p38, pAKT, glycogen synthase kinase 3β, and CREB were phosphorylated by treatment with 10 μM LPA. LPA-induced phosphorylation of CREB was efficiently blocked by U0126 and H89, inhibitors of the MAP kinases ERK1/2 and mitogen- and stress-activated protein kinase 1, respectively. Involvement of cyclin D1 in LPA-induced P19 cell proliferation was verified by immunoblot analysis in combination with pharmacological inhibitor treatment. Furthermore, LPA up-regulated CRE-harboring cyclin D1 promoter activity, suggesting that CREB and cyclin D1 play significant roles in LPA-induced proliferation of P19 embryonic carcinoma cells.  相似文献   

17.
In our recent studies, we found that LMP1 encoded by Epstein-Barr virus could accelerate the formation of active c-Jun/Jun B heterodimer. We studied the regulation of cyclinD1 by c-Jun/Jun B heterodimers by laser scanning confocal influorescence microscopy, Western blot, luciferase activity assay, super-EMSA and flow cytometry in the Tet-on-LMP1 HNE2 cell line, in which LMP1 expression was regulated by Tet-on system. c-Jun/Jun B heterodimers induced by LMP1 could up regulate cyclin D1 promoter activity and expression. Overexpression of cyclinD1 accelerated the progression of cell cycle.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号