首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

2.
The regulation of total creatine content in a myoblast cell line   总被引:5,自引:0,他引:5  
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 ± 25 M) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow ( 5 ± 1 % of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 ± 13% of control by the Na+,K+-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed - and -adrenergic agonist noradrenaline, the -adrenergic agonist isoproterenol, the 2-agonist clenbuterol and the cAMP analogue N6,2-O-dibutyryladenosine 3,5-cyclic monophosphate, but was unaffected by the 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed - and -antagonist labetalol and by the -antagonist propranolol, but was unaffected by the 2 antagonist phentolamine; greater inhibition was caused by the 2 antagonist butoxamine than the 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 ± 6% of control by insulin and by 140 ± 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 ± 40% of control by 3,3,5-triiodothyronine (at 70 M) and to 220 ± 35% of control by amylin (60 nM). As 3,3,5-triiodothyronine, amylin and isoproterenol all stimulate the Na+,K+-ATPase, we suggest that they stimulate Na+-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.Abbreviations IGF-I insulin-like growth factor I - IGF-II insulin-like growth factor II - T3 3,3,5-triiodothyronine - CGRP calcitonin gene-related peptide  相似文献   

3.
Summary In this paper, the results of the preceding electrophysiological study of sodium-alanine cotransport in pancreatic acinar cells are compared with kinetic models. Two different types of transport mechanisms are considered. In the simultaneous mechanism the cotransporterC forms a ternary complexNCS with Na+ and the substrateS; coupled transport of Na+ andS involves a conformational transition between statesNCS andNCS with inward- and outward-facing binding sites. In the consecutive (or ping-pong) mechanism, formation of a ternary complex is not required; coupled transport occurs by an alternating sequence of association-dissociation steps and conformational transitions. It is shown that the experimentally observed alanine- and sodium-concentration dependence of transport rates is consistent with the predictions of the simultaneous model, but incompatible with the consecutive mechanism. Assuming that the association-dissociation reactions are not rate-limiting, a number of kinetic parameters of the simultaneous model can be estimated from the experimental results. The equilibrium dissociation constants of Na+ and alanine at the extracellular side are determined to beK N <-64mm andK S <-18mm. Furthermore, the ratioK N /K N S of the dissociation constants of Na+ from the binary (NC) and the ternary complex (NCS) at the extracellular side is estimated to be <-6. This indicates that the binding sequence of Na+ andS to the transporter is not ordered. The current-voltage behavior of the transporter is analyzed in terms of charge translocations associated with the single-reaction steps. The observed voltage-dependence of the half-saturation concentration of sodium is consistent with the assumption that a Na+ ion that migrates from the extracellular medium to the binding site has to traverse part of the transmembrane voltage.  相似文献   

4.
Summary The influx and efflux of sodium from 4-hr washed, low salt corn roots (Zea mays L.) has been studied for characterization of passive and active components. Initial Na+ content of the roots is very low, 2.25±0.4 mol/g fresh weight. Na+ influx in the presence of 0.2mm Ca2+ and 0.002 to 20mm K+ is passive (a leak) based upon Goldman-type models, being determined by Na+ and cell potential (). Na+ was not transported by the K+ carrier and influx was unaffected by 50 m dicyclohexylcarbodiimide (DCCD). Permeability of the cells to Na+ was of the same order asP k.Efflux of Na+ was by an efficient and rapid active transport system (a pump), thus accounting for the failure of these roots to accumulate high levels of Na+. In short-term loading and efflux experiments, internal Na+ turnover had a half-time of about 5 min. Sodium efflux was unaffected by DCCD. Net H+ flux was zero in the presence of DCCD regardless of sodium efflux, indicating absence of Na+/H+ antiport. Efflux of Na+ was equally rapid into medium containing no Na+ and only 0.002mm K+. K+ influx accounted for less than 4% of Na+ efflux, prompting the hypothesis that the Na+ (or cation?) efflux pump is the second electrogenic system previously defined based upon electrophysiological measurements.  相似文献   

5.
Summary Several agents known to interact with the (Na++K+)-pump were tested for their effects on the components of steady-state K+ flux in ascites cells.86Rb+ was used as a tracer for K+, and influx was differentiated into a ouabain-inhibitable pump component, a Cl-dependent and furosemide-sensitive exchange component, and a residual leak flux. All agents tested (ouabain, quercetin, oligomycin, phosphate) affected both the pump flux and the Cl-linked flux. These findings suggest a linkage between the activity of the Na/K ATPase and the Cl-dependent K+ exchange flux. In the discussion we point out that the mechanism of this linkage could be direct; e.g., Cl-dependent exchange may represent a mode of operation of the Na/K ATPase. However, data from this and other systems tend to suggest an indirect linkage between the Na+ pump and a KCl symporter, perhaps via a change in the level of intracellular ATP.  相似文献   

6.
Purification and properties of gammagamma-enolase from pig brain   总被引:1,自引:0,他引:1  
Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as - (pI = 6.5), - (pI = 5.6), and -enolase (pI = 5.2). The pI of purified -enolase was also 5.2. The -enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55°C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%–80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, -enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The K m values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to K m values of other vertebrate enolases. The amino acid composition of pig -enolase, as determined by amino acid analysis, shows strong similarity to the compositions of -enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig -enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig -enolase and the other -enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P21. An R symm <5% was obtained for data between 50 and 3.65 Å, but was a disappointing 30% for data between 3.65 and 3.10 Å, indicating crystal disorder.  相似文献   

7.
Synaptosomal acetylcholine synthesis was found to be dependent on the presence of Na+-dependent HC-3 sensitive choline transport at low (5.5 mM) and high (35 mM) K+ concentrations. However, at 5, 20, and 100 M choline, choline phosphorylation was proportional to total choline uptake, in the presence or absence of high affinity transport. Only in the presence of eserine (50 M) did acetylcholine synthesis increase as the choline concentration was elevated from 20 M to 100 M, and this effect was observed at low and high K+ concentrations. Our results suggest that: 1) the synthesis of non-surplus synaptosomal ACh is dependent on high affinity choline transport; and 2) choline is equally likely to be phosphorylated after being taken up by low or high affinity transport.  相似文献   

8.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

9.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

10.
Summary The whole-cell voltage-clamp technique was employed to study the -adrenergic modulation of voltage-gated K+ currents in CD8+ human peripheral blood lymphocytes. The -receptor agonist, isoproterenol, decreased the peak current amplitude and increased the rate of inactivation of the delayed rectifier K+ current. In addition, isoproterenol decreased the voltage dependence of steady-state inactivation and shifted the steady-state inactivation curve to the left. Isoproterenol, on the other hand, had no significant effect on the steady-state parameters of current activation. The isoproterenol-induced decrease in peak current amplitude was inhibited by the -blocker propranolol. Bath application of dibutyryl cAMP (1mm) mimicked the effects of isoproterenol on both K+ current amplitude and time course of inactivation. Furthermore, the reduction in the peak current amplitude in response to isoproterenol was attenuated when PKI5–24 (2–5 m), a synthetic peptide inhibitor of cAMP-dependent protein kinase, was present in the pipette solution. The increase in the rate of inactivation of the K+ currents in response to isoproterenol was mimicked by the internal application of GTP--S (300 m) and by exposure of the cell to cholera toxin (1 g/ml), suggesting the involvement of a G protein. These results demonstrate that the voltage-dependent K+ conductance in T lymphocytes can be modulated by -adrenergic stimulation. The effects of -agonists, i.e., isoproterenol, appear to be receptor mediated and could involve cAMP-dependent protein kinase as well as G proteins. Since inhibition of the delayed rectifier K+ current has been found to decrease the proliferative response in T lymphocytes, the -adrenergic modulation of K+ current may well serve as a feedback control mechanism limiting the extent of cellular proliferation.  相似文献   

11.
Summary The chemical activities, (a), of Na+ and K+ were determined in large mature and in small immature frog oocytes, using open-tipped micropipettes and ionselective microelectrodes. The average chemical concentrations,c, of Na+ and K+ were determined by spectrophotometry and by electron probe X-ray microanalysis. The apparent activity coefficient (app) was calculated for each ion as the ratio,a/c.With development, (a Na/a K) decreased four to fivefold and (c Na/c K) increased six to sevenfold. In the large mature oocytes, Na app was measured to be 0.08±0.02 and K app lay within the range 1.15±0.03 to 1.29±0.04, constituting the smallest value for Na+ and largest value for K+, respectively, thus far reported. This intracellular value of K app was substantially greater than the activity coefficient of K+ in the external medium (0.76). The data suggest that the inequality of Na app and K app in this and probably other cells reflects the development of subcellular compartmentalization of ions. Possible intracellular sites of ionic compartmentalization are considered.  相似文献   

12.
Summary Sarcoplasmic reticulum (SR) vesicles from frog leg muscle were fused with a planar phospholipid bilayer by a method described previously for rabbit SR. As a result of the fusion, K+-selective conduction channels are inserted into the bilayer. Unlike the two-state rabbit channel, the frog channel displays three states: a nonconducting (closed) state and two conducting states and . In 0.1m K+ the single-channel conductances are 50 and 150 pS for and , respectively. The probabilities of appearearance of the three states are voltage-dependent, and transitions between the closed and states proceed through the state. Both open states follow a quantitatively identical selectivity sequence in channel conductance: K+>NH 4 + >Rb+>Na+>Li+>Cs+. Both open states are blocked by Cs+ asymmetrically in a voltage-dependent manner. The zero-voltage dissociation constant for blocking is the same for both open states, but the voltage-dependences of the Cs+ block for the two states differ in a way suggesting that the Cs+ blocking site is located more deeply inside the membrane in the than in the state.  相似文献   

13.
The respiratory chain of a marine bacterium,Vibrio alginolyticus, required Na+ for maximum activity, and the site of Na+-dependent activation was localized on the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase extruded Na+ as a direct result of redox reaction. It was composed of three subunits, , , and , with apparentMr of 52, 46, and 32 KDa, respectively. The reduction of ubiquinone-1 to ubiquinol proceeded via ubisemiquinone radicals. The former reaction was catalyzed by the FAD-containing subunit. This reaction showed no specific requirement for Na+. For the formation of ubiquinol, the presence of the subunit and the FMN-containing subunit was essential. The latter reaction specifically required Na+ for activity and was strongly inhibited by 2-n-heptyl-4-hydroxyquinolineN-oxide. It was assigned to the coupling site for Na+ transport. The mode of energy coupling of redox-driven Na+ pump was compared with those of decarboxylase- and ATP-driven Na+ pumps found in other bacteria.  相似文献   

14.
Summary Amiloride (0.1mm) as well as Ca++ (10mm) inhibit Na+ transport across frog skin by blocking Na+ entrance across the outer barrier of the epithelium. The inhibition produced by amiloride consists of an early and a late phase which together account for almost a total inhibition of the short-circuit current (SCC). The analysis of the time course indicates that the two phases are due to the inhibition of superficially and deeply located Na sites, respectively. Ca++, instead, only blocks a fraction of the SCC, and this fraction seems to correspond to the inhibition of the same population of Na sites blocked by the late phase of amiloride effect. The location of the two populations of Na sites as well as the possible relationship between them are discussed in terms of maturation of the outermost cell layer.  相似文献   

15.
Summary To identify ion transport systems involved in the maintenance of vascular smooth muscle cell volume the effects of incubation medium osmolality and ion transport inhibitors on the volume and 86Rb and 22Na transport in cultured smooth muscle cells from rat aorta (VSMC) have been studied. A decrease of medium osmolality from 605 to 180 mosm increased intracellular water volume from 0.6 to 1.3 l per 106 cells. Under isosmotic conditions, cell volume was decreased by ouabain (by 10%, P< 0.005) but was not influenced by bumetanide, furosemide, EIPA and quinidine. These latter compounds were also ineffective in cell volume regulation under hypotonic buffer conditions. Under hyperosmotic conditions, cell volume was decreased by bumetanide (by 7%, P<0.05) and by ethylisopropyl amiloride (by 13%, P< 0.005). Ouabain-sensitive 86Rb influx was decreased by 30–40% under hypoosmotic conditions. An increase in medium osmolality from 275 to 410 mosm resulted in an eightfold increase in bumetanide-inhibited 86Rb influx and 86Rb efflux. The (ouabain and bumetanide)-insensitive component of 86Rb influx was not dependent on the osmolality of the incubation medium. However (ouabain and bumetanide)-insensitive 86Rb efflux was increased by 1.5–2 fold in VSMC incubated in hypotonic medium. Ethylisopropyl amiloride-inhibited 22Na influx was increased by sixfold following osmotic-shrinkage of VSMC. The data show that both Na+/H+ exchange and Na+/K+/2Cl cotransport may play a major role in the regulatory volume increase in VSMC. Basal and shrinkage-induced activities of Na+/K+/2Cl cotransport in VSMC were similarly sensitive to inhibition by either staurosporin, forskolin, R24571 or 2-nitro4-carboxyphenyl N,N-diphenylcarbomate (NCDC). In contrast basal and shrinkage-induced Na+/K+/2Cl cotransport were differentially inhibited by NaF (by 30 and 65%, respectively), suggesting an involvement of guanine nucleotide binding proteins in the volume-sensitive activity of this carrier. Neither staurosporin, forskolin, R24571 nor NCDC influenced shrinkage-induced Na+/H+ exchange activity. NaF increased Na+/H+ exchanger activity under both isosmotic and hyperosmotic conditions. These data demonstrate that different intracellular signalling mechanisms are involved in the volume-dependent activation of the Na+/K+/2Cl cotransporter and the Na+/H+ exchanger.The authors gratefully acknowledge the financial support of the Swiss National Foundation, grant No. 3.817.087. Bernadette Weber is thanked for preparing the figures.  相似文献   

16.
Molecular and Functional Studies of the Gamma Subunit of the Sodium Pump   总被引:6,自引:0,他引:6  
This article reviews our studies of the subunit of the sodium pump. is a member of the FXYD family of small, single transmembrane proteins and is expressed predominantly in the kidney tubule. There are two major variants of which function similarly to bring about two distinct effects, one on KATP and the other, on K K, the affinity of the pump for K + acting as a competitor of cytoplasmic Na+. In this way, is believed to provide a self-regulatory mechanism for maintaining the steady-state activity of the pump in the kidney. Our studies also suggest that K+ antagonism of cytoplasmic Na+ activation of the pump is relevant not only to the presence of in the kidney, but probably some hitherto undefined factor(s) in other tissues, most notably heart. The interesting possibility that not only but other members of the FXYD family regulate ion transport in a tissue-specific manner is discussed.  相似文献   

17.
Summary Pancreatic islet B cells depolarize and display trains of action potentials in response to stimulatory concentrations of glucose. Based on data from rodent islets these action potentials are considered to be predominantly Ca2+ dependent. Here we describe Na+-dependent action potentials and Na+ currents recorded from canine and human pancreatic islet B cells. Current-clamp recording using the nystatin perforated-patch technique demonstrates that B cells from both species display tetrodotoxin-sensitive Na+ action potentials in response to modest glucose-induced depolarization. In companion whole-cell voltage-clamp experiments on canine B cells, the underlying Na+ current displays steep voltage-dependent activation and inactivation over the range of –50 to –40 mV. The Na+ current is sensitive to tetrodotoxin block with aK 1=3.2nm and has a reversal potential which changes with [Na+] o as predicted by the Nernst equation. These results suggest that a voltage-dependent Na+ current may contribute significantly to action potential generation in some species outside the rodent family.  相似文献   

18.
The reaction of the 5 -phosphorimidazolide of adenosine (5-ImpA) with diadenosine pyrophosphate (A5ppA) in the presence of Na+-montmorillonite in aqueous, pH 8 solution results in the regiospecific formation of A5ppA3pA and A5ppA3pA3 pA. The formation of oligomers of general structure (pA)n decreases in the presence of A5ppA. A5ppA3pA is the principal reaction product when a 1:1 ratio of ImpA and A5ppA is used. The yield of A5ppA3pA3pA is optimal when 9:1 or 4:1 ratios of ImpA: A5ppA are used. The overall regiospecificity of formation of 3,5-links is about 80%. The reaction between ImpA and A5ppA on montmorillonite differs from the self-condensation of ImpA in that it proceeds in the absence of Mg2+ and there are only small differences in oligomer yields when Na+, Li+ Ca2+, and NH 4 + are the exchangeable cations on the montmorillonite. The reaction is inhibited by 0.4 M imidazole but the inhibition is suppressed with 0.4 M Mg2+. Little or no phosphodiester bond formation was observed with Mg2+- or Al3+-montmorillonite. Montmorillonites other than 22A and Volclay exhibited no catalysis for the formation of adducts between ImpA and A5ppA and no catalysis was exhibited in ferrugenous smectite, nontronite, allophane, or sepiolite.  相似文献   

19.
A specific system for taurine transport is present at the early stages of development in both chick and rat retinas. The results obtained with taurine analogs indicate a high degree of specificity of taurine uptake. Two transport systems were detected for the adult rat retina: a high-affinity (K m 21 M) and a low-affinity transport system (K m 312 M). On the other hand, in the adult chick retina, only a low-affinity transport system (K m 580 M) could be detected. Nevertheless, embryo chick retina accumulated [3H]taurine by two different kinetic mechanisms withK m s of 242 M and 21 M for the low- and high-affinity processes, respectively. Taurine uptake systems were absolutely Na+ dependent. The sodium-dependence curve for taurine uptake was sigmoid. These mechanisms appear not to be mediated by a Na+ cotransport system. In spite of the differences observed in taurine uptake in both species, in each of them it closely parallels the changes brought about by the morphological and functional maturation of the retina.  相似文献   

20.
To elucidate molecular mechanisms of neurotropic action of a recombinant interferon, IFN-2b (laferon), its effect on transport of 22Na+ through the membrane of cultured human neuroblastoma cells (line IMR 32) was investigated. Within the first minutes after treatment with IFN-2b, the influx of 22Na+ ions was reduced by 20%, as compared with the control. Depolarization of the plasma membrane by a mixture of veratrine and scorpion (Leiurus quinquestriatus) toxin (200 and 10 g/ml, respectively) increased this flux by 50% in the control and by 70% in the IFN-2b-treated cells. A blocker of voltage-operated sodium channels, tetrodotoxin (TTX, 4 · 10-7 M), suppressed the inward flux of 22Na+ ions (completely in the control cells and by 75% in the IFN-2b-treated cells). The influx of 22Na+ ions into neuroblastoma cells depended on the concentration of IFN-2b in the incubation medium, reaching a maximum at concentrations of 600-1000 IU/ml. This allows us to suggest that entry of Na+ ions into neuroblastoma cells caused by IFN-2b is basically performed through voltage-operated TTX-sensitive sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号