首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent sterol delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) was incoporated into 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. Previously another fluorescent sterol, dehydroergosterol (F. Schroeder, Y. Barenholz, E. Gratton and T.E. Thompson. Biochemistry 26 (1987) 2441), was used for this purpose. However, there is some concern that dehydroergosterol may not be the best analogue for cholesterol. Fluorescence properties of cholestatrienol in POPC SUV were highly sensitive to cholestatrienol purity. The fluorescence decay of cholestatrienol in the POPC SUV was analyzed by assuming either that the decay is comprised of a discrete sum of exponential components or that the decay is made up of one or more component's distribution of lifetimes. The decay for cholestatrienol in POPC SUV analyzed using distributions had a lower chi 2 value and was described by a two-component Lorentzian function with centers near 0.86 and 3.24 ns, and fractional intensities of 0.96 and 0.04, respectively. Both distributions were quite narrow, i.e., 0.05 ns full-width at half-maximum peak height. It is proposed that the two lifetime distributions are generated by separate continua of environments for the cholestatrienol molecule described by different dielectric constants. In the range 0-6 mol% cholestatrienol, the cholestatrienol underwent a concentration-dependent relaxation. This process was characterized by red-shifted absorption and maxima and altered ratios of absorption and fluorescence excitation maxima. Fluorescence quantum yield, lifetime, steady-state anisotropy, limiting anisotropy and rotational rate remained constant. In contrast, in POPC vesicles containing between 6 and 33 mol% cholestatrienol, the fluorescent cholestatrienol partially segregated, resulting in quenching. Thus, below 6 mol% cholestatrienol, the cholestatrienol appeared to behave in part as monomers exposed to some degree to the aqueous solvent in a sterol-poor domain within POPC bilayers. Since the lifetime did not decrease above 6 mol% cholestatrienol, the fluorescence at high mol% values of cholestatrienol was due to cholestatrienol in the sterol-poor domain. The fluorescence intensity, quantum yield, steady-state anisotropy, and limiting anisotropy of cholestatrienol in the sterol-poor domain decreased to limiting, nonzero values while the rotational rate increased to a limiting value. Thus, the sterol-poor domain became more disordered when it coexisted with the sterol-rich domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
A fluorescence and radiolabel study of sterol exchange between membranes   总被引:2,自引:0,他引:2  
The fluorescent sterols delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) and delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) as well as [1,2-3H]cholesterol were utilized as cholesterol analogues to examine spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Exchange of fluorescent sterols was monitored at 24 degrees C by release from self-quenching of polarization from the time of mixing without separation of donor and acceptor vesicles. The polarization curve for 35 mol% sterol in POPC best fitted a two-exponential function, with a fast-exchange rate constant k1 = 0.0217 min-1, 1t1/2 = 32 min, size pool 1 = 12%, and a slow rate constant k2 = 2.91.10(-3) min-1, 2t1/2 = 238 min, size pool 2 = 88%. In addition to the above two exchangeable pools of sterol, the data were consistent with the presence of a slowly or nonexchangeable pool, 42% of total sterol, that was highly dependent on sterol content. These results were confirmed by simultaneous monitoring of [1,2-3H]cholesterol radioactivity and dehydroergosterol fluorescence intensity after separation of donor and acceptor vesicles by ion-exchange column chromatography. Thus, dehydroergosterol or cholestatrienol exchange as measured by fluorescence parameters (polarization and/or intensity) provides two new methods to follow cholesterol spontaneous exchange. These methods allow resolution and quantitation of a shorter exchange t1/2 near 30 min previously not reported. Thus, the cholesterol desorption rate from membranes may be faster than previously believed. In addition, the presence of a slowly non-exchangeable pool was confirmed.  相似文献   

3.
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was incorporated into 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. In the range 0-5 mol % fluorescent sterol, dehydroergosterol underwent a concentration-dependent relaxation characterized by red-shifted wavelengths of maximum absorption as well as altered ratios of absorbance maxima and fluorescence excitation maxima at 338 nm/324 nm. Fluorescence intensity per mole of dehydroergosterol increased up to 5 mol % in POPC vesicles. In contrast, quantum yield, steady-state anisotropy, limiting anisotropy, lifetime, and rotational rate remained relatively constant in this concentration range. Similarly, addition of increasing cholesterol in the range 0-5 mol % in the presence of 3 mol % dehydroergosterol also increased the fluorescence intensity per mole of dehydroergosterol, red-shifted wavelengths of maximum absorption, and altered ratios of absorbance maxima. In POPC vesicles containing between 5 and 33 mol % dehydroergosterol, the fluorescent dehydroergosterol interacted to self-quench, thereby decreasing the fluorescence intensity, quantum yield, steady-state anisotropy, and limiting anisotropy and increasing the rotational rate (decreased rotational relaxation time) of the fluorescent sterol. The fluorescence lifetime of dehydroergosterol remained unchanged. The results were in accord with the interpretation that below 5 mol% sterol, the sterols behaved as monomers exposed to some degree to the aqueous solvent in POPC bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
F Schroeder  G Nemecz 《Biochemistry》1989,28(14):5992-6000
The fluorescent sterol dehydroergosterol was used as a cholesterol analogue in conjunction with multifrequency phase and modulation (1-250 MHz) fluorometry to examine whether sterols (1) interact preferentially with fluid- or solid-phase phospholipids and (2) interact preferentially with sphingomyelin in phase-separated or phase-miscible cosonicated phospholipid membranes. Cosonicated small unilamellar vesicles (SUV) were produced by mixing lipids in organic solvents, drying the mixture, adding buffer, sonicating, and separating SUV. Phospholipids of synthetic as well as biological origin were utilized. In phase-separated, cosonicated SUV of dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC, 1:1 molar ratio), the fluorescent sterol (0.5 mol %) interacted preferentially with the fluid-phase lipid (partition coefficient, Kf/s = 2.6-3.4) according to four criteria. First, dehydroergosterol detected only the phase transition of DMPC, the phospholipid with the lower phase transition temperature. Second, the dehydroergosterol fluorescence polarization, limiting anisotropy, order parameter, and rotational relaxation time in the cosonicated vesicle were similar to those of dehydroergosterol in SUV composed only of DMPC. Third, the number of dehydroergosterol fluorescence lifetime components as well as the distribution in the cosonicated SUV was similar to that of dehydroergosterol in SUV composed of DMPC. Fourth, dehydroergosterol concentration-dependent self-quenching was detected in DSPC SUV at much lower dehydroergosterol concentration than in DMPC SUV. Preference of dehydroergosterol for fluid-phase lipids was also observed by monitoring dehydroergosterol exchange between individually sonicated DMPC SUV and DSPC SUV after the two types of vesicles were mixed in equal proportions. In these SUV mixtures, the dehydroergosterol also partitioned into the more fluid SUV, 99:1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The domain structure of cholesterol in membranes and factors affecting it are not well understood. A method, based on kinetics of delta 5,7,9,(11),22-erogostatetraen-3 beta-ol (dehydroergosterol) fluorescence polarization change and not requiring separation of donor and acceptor membranes, was used to examine sterol domains in three-component cholesterol:dehydroergosterol:phospholipid small unilamellar vesicles (SUV). A new mathematical data treatment was developed to provide a direct correlation between molecular sterol exchange and steady-state dehydroergosterol fluorescence polarization measurements. The method identified multiple kinetic pools of sterol in SUV: a small but rapidly exchanging pool, a predominant slowly exchanging pool, and a very slowly exchangeable (nonexchangeable) pool. The relative sizes of the pools and half-times of exchange were highly dependent on the presence of acidic phospholipids and on cytosolic proteins involved in sterol transfer. Thus, the method provides a direct measure of molecular sterol transfer between membranes without separating donor and acceptor membranes.  相似文献   

6.
The fluorescent sterol delta 5,7,9(11)-dehydroergostatetraen-3 beta-ol (dehydroergosterol) was used as an analogue of cholesterol to examine the molecular interaction of purified rat liver sterol carrier protein-2 (SCP-2) with sterol. The binding of dehydroergosterol to SCP-2 was evidenced by light scatter and by fluorescence polarization, lifetime, limiting anisotropy, and rotational relaxation time of dehydroergosterol. In addition, energy transfer efficiency from SCP-2 tryptophan to dehydroergosterol was 96%, indicating that the apparent distance, R, between the SCP-2 tryptophan (energy donor) and the dehydroergosterol (energy acceptor) was 13.7 A. Scatchard binding analysis of light scatter, lifetime, and energy transfer data all indicated a 1:1 molar stoichiometry with Kd = 1.2, 1.6, and 1.3 microM, respectively. SCP-2 enhanced the activity of microsomal acyl-CoA:cholesterol acyltransferase through transfer of [3H]cholesterol from donor palmitoyloleoyl phosphatidylcholine/cholesterol small unilamellar vesicles to rat liver microsomes containing the enzyme. A recently developed fluorescence assay utilizing dehydroergosterol fluorescence polarization (Nemecz, G., Fontaine, R. N., and Schroeder, F. (1988) Biochim. Biophys. Acta 948, 511-521; Nemecz, G., and Schroeder, F. (1988) Biochemistry 27, 7740-7749) was applied to examine the effect of SCP-2 on sterol exchange. In the absence of SCP-2, two spontaneously exchangeable sterol domains were observed in palmitoyloleoyl phosphatidylcholine/sterol (65:35 molar ratio) small unilamellar vesicles. SCP-2 enhanced the rate of exchange of the faster exchanging domain 2-fold. The transfer rate of the more slowly exchangeable sterol domain and the fraction of cholesterol represented by each domain were not affected. These results demonstrate the utility of dehydroergosterol to probe SCP-2 interactions with sterols and are indicative of a physiological role for SCP-2 as a soluble sterol carrier.  相似文献   

7.
E Kalb  F Paltauf    A Hermetter 《Biophysical journal》1989,56(6):1245-1253
Fluorescence lifetimes of 1-palmitoyl-2-diphenylhexatrienylpro-pionyl-phosphatidylc hol ine in vesicles of palmitoyloleoyl phosphatidylcholine (POPC) (1:300, mol/mol) in the liquid crystalline state were determined by multifrequency phase fluorometry. On the basis of statistic criteria (chi 2red) the measured phase angles and demodulation factors were equally well fitted to unimodal Lorentzian, Gaussian, or uniform lifetime distributions. No improvement in chi 2red could be observed if the experimental data were fitted to bimodal Lorentzian distributions or a double exponential decay. The unimodal Lorentzian lifetime distribution was characterized by a lifetime center of 6.87 ns and a full width at half maximum of 0.57 ns. Increasing amounts of cholesterol in the phospholipid vesicles (0-50 mol% relative to POPC) led to a slight increase of the lifetime center (7.58 ns at 50 mol% sterol) and reduced significantly the distributional width (0.14 ns at 50 mol% sterol). Lifetime distributions of POPC-cholesterol mixtures containing greater than 20 mol% sterol were within the resolution limit and could not be distinguished from monoexponential decays on the basis of chi 2red. Cholesterol stabilizes and rigidifies phospholipid bilayers in the fluid state. Considering its effect on lifetime distributions of fluorescent phospholipids it may also act as a membrane homogenizer.  相似文献   

8.
A fluorescent sterol probe study of human serum low-density lipoproteins   总被引:1,自引:0,他引:1  
The fluorescent sterol probe, ergosta-5,7,9,(11),22-tetraen-3 beta-ol (dehydroergosterol), was utilized as a cholesterol analog to label human serum low-density lipoproteins (LDL). Quenching of dehydroergosterol fluorescence by KI indicated that most of the fluorophore was either buried within the outer phospholipid monolayer of LDL or within the neutral lipid core of LDL. The steady-state anisotropy of dehydroergosterol in LDL detected the cholesteric core phase transition near 30 degrees C. Fluorescence lifetime decays for dehydroergosterol contained two components, both below and above the cholesteric phase transition, with the major lifetime component near 1 ns. Neither lifetime component underwent a detectable change in duration at the core phase transition temperature. Time-correlated fluorescence anisotropy decays of dehydroergosterol indicated a single rotational correlation time near 1.7 ns, which was unaffected by the core phase transition. Time-correlated anisotropy decays also suggested hindered rotation of dehydroergosterol in LDL. These results indicate that unesterified cholesterol is primarily located in the outer phospholipid monolayer of LDL, with the majority of cholesterol not in direct contact with the aqueous phase.  相似文献   

9.
The effect of three different membrane proteins on the fluorescence lifetime heterogeneity of 1,6-diphenyl-1,3,5-hexatriene (DPH) in phospholipid vesicle systems was investigated. For large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) at 37 degrees C, the fluorescence decay was essentially monoexponential (8.6 and 8.2 ns, respectively) except for a minor component typical of DPH. For gramicidin D reconstituted into DMPC vesicles at a protein/lipid molar ratio of 1/7, the most appropriate analysis of the data was found to be in the form of a bimodal Lorentzian distribution. Centers of the major lifetime components were almost identical with those recovered for vesicles without proteins, while broad distributional widths of some 4.0 ns were recovered. Variation of the protein/lipid molar ratio in sonicated POPC vesicles revealed an abrupt increase in distributional width at ratios approximating 1/15-1/20, which leveled off at about 2.5 ns. For bacteriorhodopsin in DMPC vesicles and cytochrome b5 in POPC, the most appropriate analysis of the data was again found to be in the form of a bimodal Lorentzian also with broad distributional widths in the major component. Lifetime centers were decreased for these proteins due to fluorescence energy transfer to the retinal of the bacteriorhodopsin and heme of the cytochrome b5. Fluorescence energy transfer is distance dependent, and since a range of donor-acceptor distances would be expected in a membrane, lifetime distributions should therefore be recovered independently of other effects for proteins possessing acceptor chromophores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Physical properties of the fluorescent sterol probe dehydroergosterol   总被引:3,自引:0,他引:3  
Spectroscopic studies were performed on the fluorescent sterol probes ergosta-5,7,9(11),22-tetraen-3 beta-ol (dehydroergosterol) and cholesta-5,7,9(11)-trien-3 beta-ol (cholestatrienol). In most isotropic solvents, these molecules exhibited a single lifetime near 300 ps. Fluorescence lifetimes in 2-propanol were independent of emission wavelength and independent of excitation wavelength. Excited state behavior of these probes appears relatively simple. In isotropic solvents, dehydroergosterol fluorescence emission underwent at most a small Stokes shift as solvent polarity was modified. Time-resolved anisotropy decays indicated that dehydroergosterol decay was monoexponential, with rotational correlation times dependent on solvent viscosity. When incorporated into L-alpha-dimyristoylphosphatidylcholine liposomes at a concentration of 0.9 mol%, dehydroergosterol fluorescence lifetime decreased at the phase transition of this phospholipid indicating that the sterol probe was detecting physical changes of the bulk phospholipids. Furthermore, total fluorescence decays and anisotropy decays were sensitive to the environment of the sterol. Dehydroergosterol and cholestatrienol are thus useful probes for monitoring sterol behavior in biological systems.  相似文献   

11.
Olsher M  Yoon SI  Chong PL 《Biochemistry》2005,44(6):2080-2087
We developed a new fluorescence assay for sterol oxidation and used it to study the relationship between free radical-induced sterol oxidation and membrane sterol lateral organization. This assay used dehydroergosterol (DHE) as both a membrane probe and a membrane component. Sterol oxidation was induced by a free radical generator, AAPH (2,2'-azobis(2-amidinopropane)dihydrochloride). Using this new assay, we found that, in unilamellar vesicles composed of DHE and 1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC), the initial rate of DHE oxidation induced by AAPH changed with membrane sterol content in an alternating manner, exhibiting a local maximum at 20.3, 22.2, 25.0, 32.3, and 40.0 mol % DHE. These mole fractions correspond to the critical sterol mole fractions C(r) predicted for maximal sterol superlattice formation. In three-component bilayers composed of POPC, cholesterol, and DHE (fixed at 1 and 5 mol %), the initial rate of AAPH-induced DHE oxidation exhibited a biphasic change whenever the total sterol mole fraction, irrespective of the DHE content, was near C(r), indicating that the correlation between sterol oxidation and sterol superlattice formation revealed in this study is not an artifact due to the use of the fluorescent cholesterol analogue DHE. The alternating variation of AAPH-induced sterol oxidation with sterol content also appeared in multicomponent unilamellar vesicles containing bovine brain sphingomyelins (bbSPM), POPC, and DHE. The present work and our previous study on cholesterol oxidase-induced sterol oxidation [Wang et al. (2004) Biochemistry 43, 2159-2166] suggest that sterol oxidation in general, either by reactive oxygen species or by enzymes, may be regulated by the extent of sterol superlattice in the membrane and thus regulated by the membrane sterol content in a fine-tuning manner.  相似文献   

12.
U P Andley  B A Clark 《Biochemistry》1988,27(2):810-820
Fluorescence lifetime and acrylamide quenching studies on the N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS)-labeled sulfhydryl groups of bovine lens alpha-, beta H-, and gamma-crystallins were carried out to characterize the microenvironment of the sulfhydryls and changes produced by singlet oxygen mediated photooxidation. For the untreated proteins, the lifetimes of the major decay component of the fluorescence-labeled crystallins were 15.2, 14.4, and 13.0 ns, and the quenching rate constant, kq, values were 16.6 x 10(7), 26.9 x 10(7), and 32.7 x 10(7) M-1 s-1 for alpha-, beta H-, and gamma-crystallins, respectively. The results indicate that as the polarity of the sulfhydryl site increased (i.e., its lifetime decreased), its accessibility to collisional quenching by acrylamide also increased. The minor decay component of the fluorescence label was not significantly quenched by acrylamide for all three classes of crystallins. When the proteins were irradiated in the presence of methylene blue, in a system generating singlet oxygen, the kq value for acrylamide quenching of the major decay component of alpha-crystallin decreased to zero, while its lifetime decreased to 6 ns. Neither the lifetime nor the kq of alpha-crystallin recovered completely in the presence of the singlet oxygen quencher sodium azide. Light-induced binding of the photosensitizer methylene blue to the crystallins was observed by absorption spectroscopy. The bound photosensitizer partially quenches the fluorescence lifetime of the N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS) label in irradiated alpha-crystallin. Further decrease in the lifetime occurs as a result of the singlet oxygen mediated conformational change. The results suggest that the fluorescence lifetime of the AEDANS is fully quenched in the irradiated alpha-crystallin and there is no further quenching by acrylamide. An increase in the fraction of the minor component of beta H-crystallin which was inaccessible to acrylamide quenching was observed after irradiation. There was no effect of irradiation on the kq for acrylamide quenching of the major component of the decay of AEDANS bound to beta H- or gamma-crystallins. Static quenching was found to contribute significantly to the steady-state quenching plots of the polar sulfhydryl sites of irradiated alpha-crystallin and of untreated and irradiated beta H- and gamma-crystallins, but it had no detectable role in the case of untreated alpha-crystallin. Fluorescence anisotropy of the AEDANS label bound to the crystallins was higher in the irradiated crystallins as compared with the controls.  相似文献   

13.
Fluorescent sterols, dehydroergosterol and NBD-cholesterol, were used to examine high density lipoprotein-mediated cholesterol uptake and intracellular targeting in L-cell fibroblasts. The uptake, but not esterification or targeting to lipid droplets, of these sterols differed >100-fold, suggesting significant differences in uptake pathways. NBD-cholesterol uptake kinetics and lipoprotein specificity reflected high density lipoprotein-mediated sterol uptake via the scavenger receptor B1. Fluorescence energy transfer showed an average intermolecular distance of 26 A between the two fluorescent sterols in L-cells. Indirect immunofluorescence revealed that both fluorescent sterols localized to L-cell lipid droplets, the surface of which contained adipose differentiation-related protein. This lipid droplet-specific protein specifically bound NBD-cholesterol with high affinity (K(d) = 2 nM) at a single site. Thus, NBD-cholesterol and dehydroergosterol were useful fluorescent probes of sterol uptake and intracellular sterol targeting. NBD-cholesterol more selectively probed high density lipoprotein-mediated uptake and rapid intracellular targeting of sterol to lipid droplets. Targeting of sterol to lipid droplets was correlated with the presence of adipose differentiation related protein, a lipid droplet-specific protein shown for the first time to bind unesterified sterol with high affinity.  相似文献   

14.
Selective binding of cholesterol by recombinant fatty acid binding proteins   总被引:3,自引:0,他引:3  
The sterol binding specificity of rat recombinant liver fatty acid binding protein (L-FABP) and intestinal fatty acid binding protein (I-FABP) was characterized with [3H]cholesterol and a fluorescent sterol analog dehydroergosterol. Ligand binding analysis, fluorescence spectroscopy, and activation of microsomal acyl-CoA:cholesterol acyltransferase activity showed that L-FABP-bound sterols. 1) Lipidex-1000 assay showed a dissociation constant Kd = 0.78 +/- 0.18 microM and stoichiometry of 0.47 +/- 0.16 mol/mol for [3H]cholesterol binding to L-PABP. 2) With [3H]cholesterol/phosphatidylcholine liposomes, the cholesterol binding parameters for L-FABP were Kd = 1.53 +/- 0.28 microM and stoichiometry 0.83 +/- 0.07 mol/mol. 3) L-FABP interaction with dehydroergosterol altered the fluorescence intensity and polarization of dehydroergosterol. Dehydroergosterol bound to L-FABP with Kd = 0.37 microM and a stoichiometry of 0.83 mol/mol. 4) Cholesterol and dehydroergosterol decreased L-FABP tyrosine lifetime. Dehydroergosterol binding produced sensitized emission of bound dehydroergosterol with longer lifetime.5) L-FABP bound two cis-parinaric acid molecules/molecule of protein. Cholesterol displaced one of these bound cis-parinaric acids. 6) L-FABP enhanced acyl-CoA:cholesterol acyltransferase in a concentration-dependent manner. In contrast, these assays indicated that I-FABP did not bind sterols. Thus, L-FABP appears able to bind 1 mol of cholesterol/mol of L-FABP, the L-FABP sterol binding site is equivalent to one of the two fatty acid binding sites, and L-FABP stimulates acyl-CoA:cholesterol acyltransferase by transfer of cholesterol.  相似文献   

15.
The fluorescent sterol analogue delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was synthesized and purified by reverse-phase high-performance liquid chromatography. Dehydroergosterol in aqueous solution had a critical micelle concentration of 25 nM and a maximum solubility of 1.3 microM as ascertained from fluorescence polarization and light scattering properties, respectively. Several lines of evidence indicated a close molecular interaction of dehydroergosterol with purified rat liver squalene and sterol carrier protein (SCP). SCP increased the maximal solubility of dehydroergosterol in aqueous buffer. The fluorescence emission spectrum of dehydroergosterol was blue shifted upon addition of SCP. The fluorescence lifetime of dehydroergosterol in aqueous buffer was 2.3 ns; addition of SCP resulted in the appearance of a second lifetime component near 12.4 ns. The SCP increased the fluorescence polarization of monomeric dehydroergosterol in aqueous buffer from 0.033 to 0.086. Scatchard analysis of the binding data indicated that dehydroergosterol interacted with purified rat liver SCP with an apparent KD = 0.88 microM and Bmax = 4.8 microM. At maximal binding, 1.0 mol of dehydroergosterol was specifically bound per mole of SCP. The close molecular interaction of dehydroergosterol with SCP was also demonstrated by energy-transfer experiments. The intermolecular distance between SCP and bound dehydroergosterol was evaluated by fluorescence energy transfer from tyrosine residues of SCP to the conjugated triene series of double bonds in dehydroergosterol. The transfer efficiency was 36%, and R, the apparent distance between the tyrosine energy donor and the dehydroergosterol energy acceptor, was 19 A. The significance of these data obtained in vitro for dehydroergosterol interaction with SCP was also tested in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The molecular organization of sterols in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 37 degrees C is examined by utilizing the fluorescent analogue of cholesterol cholesta-5,7,9-trien-3 beta-ol (cholestatrienol). (1) Cholestatrienol is shown to be indistinguishable from native cholesterol in terms of its ability to condense POPC, as determined by (i) pressure/area studies of mixed-lipid monolayers and (ii) its ability to increase the order of POPC bilayers (determined by electron spin resonance studies) whether on its own or admixed with cholesterol at various ratios. (2) By analysis of the perturbation of the absorption spectra, cholestatrienol was found to be freely miscible in aggregates of cholesterol in buffer. In contrast, a lack of any detectable direct interaction of the sterol molecules in POPC bilayers was detected. (3) Fluorescence intensity and lifetime measurements of POPC/sterol (1:1 mol/mol) at various cholesterol/cholestratrienol molar ratios (0.5:1 up to 1:1 cholestatrienol/POPC) confirmed that sterol molecules in the membrane matrix were not associated to any great degree. (4) A quantitative estimate of how close sterol molecules approach each other in the membrane matrix was evaluated from the concentration dependence of the steady-state depolarization of fluorescence and was found to be 10.6 A. From geometrical considerations, the sterol/phospholipid phase at 1:1 mol/mol is depicted as each sterol having four POPC molecules as nearest neighbors. We term this arrangement of the lipid matrix an "ordered bimolecular mesomorphic lattice". (5) The concentration dependence of depolarization of fluorescence of cholestatrienol in POPC liposomes in the absence of cholesterol yielded results that were consistent with the cholestatrienol molecules being homogeneously dispersed throughout the phospholipid phase at sterol/POPC ratios of less than 1:1. (6) From qualitative calculations of the van der Walls' hydrophobic interactions of the lipid species, the phospholipid condensing effect of cholesterol is postulated to arise from increased interpenetration of the flexible methylene segments of the acyl chains, as a direct result of their greater mutual attraction compared to their attraction for neighboring sterol molecules. (7) The interdependence of the ordered bimolecular mesomorphic lattice and the acyl chain condensation is discussed in an effort to understand the ability of cholesterol to modulate the physical and mechanical properties of biological membranes.  相似文献   

17.
Several studies have indicated the involvement of steryl glycosides in the cellular stress response. In this work, we have compared the effect of 1-O-cholesteryl-beta-d-glucoside, 1-O-cholesteryl-beta-d-galactoside and cholesterol on the properties of glycerophospholipid and sphingolipid bilayers. The studies were performed in order to gain insight into the change in membrane properties that would follow upon the glycosylation of cholesterol in cells subjected to stress. DPH anisotropy measurements indicated that the cholesteryl glycosides (10-40 mol%) increased the order of the hydrophobic region of a POPC bilayer almost as efficiently as cholesterol. In a PSM bilayer, the cholesteryl glycosides were however shown to be much less effective compared to cholesterol in ordering the hydrocarbon chain region at temperatures above the gel to liquid-crystalline phase transition. Fluorescence quenching analysis of multicomponent lipid bilayers demonstrated that the cholesteryl glycosides, in contrast to cholesterol, were unable to stabilize ordered domains rich in PSM against temperature-induced dissociation. When the sterols were incorporated into bilayers composed of both POPC and PSM, the cholesteryl glycosides showed a higher propensity, compared to cholesterol, to influence the endothermal component representing the melting of POPC-rich domains, as determined by differential scanning calorimetry. Taken together, the results indicate that the glycosylation of cholesterol diminishes the ability of the sterol to reside in lateral domains constituted by membrane lipids having highly ordered hydrocarbon chains.  相似文献   

18.
The allosteric transition of threonine-sensitive aspartokinase I-homoserine dehydrogenase I from Escherichia coli has been studied by time-resolved fluorescence spectroscopy. Fluorescence decay can be resolved into 2 distinct classes of tryptophan emitters: a fast component, with a lifetime of about 1.5 ns; and a slow component, with a lifetime of about 4.5 ns. The fluorescence properties of the slow component are modified by the allosteric transition. In the T-form of the enzyme stabilized by threonine, the lifetime of the slow component is longer, with a red-shifted spectrum; its accessibility to quenching by acrylamide becomes slightly higher without any decrease of fluorescence anisotropy. These results indicate a change in polarity of the slow component environment. The quaternary structure change associated with the allosteric transition probably involves global movements of structural domains without leading to any local mobility on the nanosecond time-scale. We suggest that the slow component corresponds to the unique tryptophan of the buried kinase domain.  相似文献   

19.
Using multifrequency phase/modulation fluorometry, we have studied the fluorescence decay of the single tryptophan residue of ribonuclease T1 (RNase T1). At neutral pH (7.4) we find that the decay is a double exponential (tau 1 = 3.74 ns, tau 2 = 1.06 ns, f1 = 0.945), in agreement with results from pulsed fluorometry. At pH 5.5 the decay is well described by a single decay time (tau = 3.8 ns). Alternatively, we have fitted the frequency domain data by a distribution of lifetimes. Temperature dependence studies were performed. If analyzed via a double exponential model, the activation energy for the inverse of the short lifetime component (at pH 7.4) is found to be 3.6 kcal/mol, as compared with a value of 1.0 kcal/mol for the activation energy of the inverse of the long lifetime component. If analyzed via the distribution model, the width of the distribution is found to increase at higher temperature. We have also repeated, using lifetime measurements, the temperature dependence of the acrylamide quenching of the fluorescence of RNase T1 at pH 5.5. We find an activation energy of 8 kcal/mol for acrylamide quenching, in agreement with our earlier report.  相似文献   

20.
This study examined the kinetics of sterol desorption from monolayer and small unilamellar vesicle membranes to 2-hydroxypropyl-beta-cyclodextrin. The sterols used include cholesterol, dehydroergosterol (ergosta-5,7,9,(11),22-tetraen-3beta-ol) and cholestatrienol (cholesta-5,7,9,(11)-trien-3beta-ol). Desorption rates of dehydroergosterol and cholestatrienol from pure sterol monolayers were faster (3.3-4.6-fold) than the rate measured for cholesterol. In mixed monolayers (sterol: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 30:70 mol%), both dehydroergosterol and cholestatrienol desorbed faster than cholesterol. clearly indicating a difference in interfacial behavior of these sterols. In vesicle membranes desorption of dehydroergosterol was slower than desorption of cholestatrienol, and both rates were markedly affected by the phospholipid composition. Desorption of sterols was slower from sphingomyelin as compared to phosphatidylcholine vesicles. Desorption of fluorescent sterols was also faster from vesicles prepared by ethanol-injection as compared to extruded vesicles. The results of this study suggest that dehydroergosterol and cholestatrienol differ from cholesterol in their membrane behavior, therefore care should be exercised when experimental data derived with these probes are interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号