首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resident peritoneal macrophages from untreated mice develop potent microbicidal activity against amastigotes of Leishmania major after in vitro treatment with lymphokine (LK) from mitogen-stimulated spleen cells. LK-induced macrophage microbicidal activity was completely and selectively abrogated by treatment with phosphatidylcholine-phosphatidylserine (PC/PS) liposomes. Other macrophage effector functions (phagocytosis, tumoricidal activity) were unaffected, as was cytotoxicity by macrophages activated in vivo or by LK in vitro before liposome treatment. Activation factors in LK were not adsorbed or destroyed by liposomes. Liposome-induced inhibition was unaffected by indomethacin and was fully reversible: macrophages washed free of liposomes developed strong microbicidal activity with subsequent LK treatment. Changes in liposomal lipid composition markedly altered suppressive effects, but inhibition was not dependent on liposome size, cholesterol content, charge, or number of lamellae. Liposomes composed of PC alone or in combination with any of five different phospholipids were not suppressive. In contrast, inhibition was directly dependent on PS concentration within PC/PS liposomes. Phosphoserine was not inhibitory nor was dimyristoyl PS (synthetic saturated PS). However, the lysophospholipid metabolite of PS, lysoPS, was strongly suppressive. These studies suggest that the reversible and selective inhibition of LK-induced macrophage microbicidal activity by PC/PS liposomes is mediated by PS and its lysoPS metabolite.  相似文献   

2.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

3.
Liposomes coated with neoglycolipids constructed with mannopentaose and dipalmitoylphosphatidylethanolamine (Man5-DPPE) have been shown to induce cellular immunity against antigens encapsulated in the liposomes. To assess whether these neoglycolipid-coated liposomes can elicit protective immune response against challenge infection, effects of immunization with soluble leishmanial antigens encapsulated in the liposomes were evaluated using Leishmania major infection in susceptible BALB/c mice. Intraperitoneal immunization of mice with leishmanial antigens in the Man5-DPPE-coated liposomes significantly suppressed footpad swelling in comparison to the control, non-immunized mice, while progression of the disease was observed in mice administered antigens in uncoated liposomes and those administered soluble antigens alone, as seen with control mice. Similarly, the number of parasites decreased substantially in local lymph nodes of mice immunized with the antigen in the Man5-DPPE-coated liposomes. Protection against L. major infection in the immunized mice also coincided with an elevated ratio of antigen-specific IgG2a/IgG1 antibodies, which is a profile of T helper-type 1-like immune response. Taken together, these results indicate the possibility that Man5-DPPE-coated liposome-encapsulated antigens could serve as a vaccine that triggers protection against infectious disease.  相似文献   

4.
The phospholipid mediator, platelet activating factor (PAF: 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine), was recently reported to activate macrophage-monocyte cells as well as neutrophils or platelets. PAF was incorporated into dipalmitoylphosphatidylcholine-cholesterol liposomes, and their effect on guinea pig peritoneal macrophages was examined. PAF incorporated into liposomes was found to activate macrophages much more potently than PAF in the free form, whereas the effect of PAF in liposome on platelets was weaker than that of PAF in the free form. A large difference between PAF in liposomes and PAF in the free form was observed in the rate of degradation of PAF during incubation with macrophages. This rapid degradation of PAF in the free form may partially explain the poor activation by PAF of macrophages.  相似文献   

5.
Leishmaniasis is a family of diseases caused by protozoan parasites of the genus Leishmania. Various Leishmania species can cause human infection, producing a spectrum of clinical manifestations. The current treatments are unsatisfactory, and in absence of a vaccine, there is an urgent need for effective drugs to replace/supplement those currently in use. Recent studies have shown that the antineoplastic drug, tamoxifen, had direct leishmanicidal effect on several Leishmania species in vitro. Moreover, in vivo testing was carried out on some of the species and showed promising results. The authors have carried out the present work to complement previous published studies by investigating in vivo activity of tamoxifen in an experimental model of cutaneous leishmaniasis (CL) caused by Leishmania major. Groups of infected mice were given tamoxifen, orally, at a dose of 20 mg/kg/day for 15 days. Efficacy was assessed clinically, parasitologically, histopathologically by light and transmission electron microscope (TEM). Results showed that untreated infected mice suffered from autoamputation of the inoculated foot pad. However, those which received tamoxifen showed marked improvement of the cutaneous lesions and reduction of parasite burden. TEM of the cutaneous lesions from infected mice revealed the fine structure of normal Leishmania amastigotes, whereas those from infected mice treated with tamoxifen showed considerable changes. All male mice that received tamoxifen showed scrotal swelling with evident histopathological changes in the testes that could seriously compromise fertility of male mice. In conclusion, although tamoxifen causes significant side effects to the male reproductive system in the mouse model, it could provide an alternative to current agents. Results of this study demonstrated in vivo activity of tamoxifen against Leishmania major, thus, suggesting that tamoxifen is a suitable lead for the synthesis of more effective and less toxic antileishmanial derivatives.  相似文献   

6.
Macrophages treated with lymphokine (LK)-rich culture fluids from antigen- or mitogen-stimulated spleen cells or the hybridoma T cell 24/G1, or murine recombinant interferon-gamma (IFN-gamma) from either transfected monkey kidney cells (cos rIFN-gamma) or bacterial (E. coli) DNA (rIFN-gamma) developed the capacity to kill intracellular amastigotes of Leishmania major. Removal of IFN activity from LK by neutralizing fluid phase monoclonal anti-rIFN-gamma antibody, or by solid phase immunoadsorption, left residual macrophage activation factors that induced approximately 50% of the macrophage anti-leishmanial activity of untreated LK. In contrast, rIFN-gamma subjected to the same antibody treatments lost all capacity to induce this macrophage effector function. These results suggest that the intracellular destruction of amastigotes is regulated by several different factors. One of these factors is clearly IFN-gamma, which is pleiotropic in its effects on macrophage functions. The other non-IFN LK factors are immunochemically unrelated to IFN-gamma, and may regulate macrophage microbicidal activities in a more selective manner.  相似文献   

7.
Macrophages from P/J mice demonstrated both quantitative and qualitative defects in lymphokine (LK)-induced activated macrophage antileishmanial effector reactions: a) these cells recognized the same LK signals that generated resistance to infection in responsive C3H/HeN macrophages, but more signal was required to observe maximal activity; b) LK-induced intracellular destruction of Leishmania tropica by P/J macrophages was minimal (less than 20%), and was induced by only one of three LK signals that regulate antimicrobial activities in C3H/HeN macrophages. The defective microbicidal activity of P/J macrophages observed with LK activation in vitro could also be demonstrated in vivo. Macrophages from P/J mice exposed to the macrophage-activating agent Mycobacterium bovis strain BCG in vivo were capable of restricting the intracellular replication of L. tropica but could not eliminate intracellular parasites, even with further incubation with LK during the 72-hr culture period. The defect of P/J macrophages for intracellular destruction of L. tropica, then, occurred in the activation sequence before the triggering stage that characterizes the macrophage defect of C3H/HeJ mice. Genetic regulation of the P/J macrophage defect appears to be by a single autosomal gene, with defective microbicidal activity as a recessive trait in these animals.  相似文献   

8.
Ether phospholipids are major components of the membranes of humans and Leishmania. In protozoan parasites they occur separately or as part of the glycosylphosphatidylinositol (GPI) anchor of molecules implicated in virulence, such as lipophosphoglycan (LPG), smaller glycosylinositolphospholipids (GIPLs), and GPI-anchored proteins. We generated null mutants of the Leishmania major alkyldihydroxyacetonephosphate synthase (ADS), the first committed step of ether lipid synthesis. Enzymatic analysis and comprehensive mass spectrometric analysis showed that ads1- knock-outs lacked all ether phospholipids, including plasmalogens, LPG, and GIPLs. Leishmania ads1- thus represents the first ether lipid-synthesizing eukaryote for which a completely null mutant could be obtained. Remarkably ads1- grew well and maintained lipid rafts (detergent-resistant membranes). In virulence tests it closely resembled LPG-deficient L. major, including sensitivity to complement and an inability to survive the initial phase of macrophage infection. Likewise it retained the ability to inhibit host cell signaling and to form infectious amastigotes from the few parasites surviving the establishment defect. These findings counter current proposals that GIPLs are required for amastigote survival in the mammalian host or that parasite lyso-alkyl or alkylacyl-GPI anchors are solely responsible for inhibition of macrophage activation.  相似文献   

9.
Nitric oxide (NO) is considered a key molecule in the defense against intracellular pathogens, particularly Leishmania. The expression of inducible nitric oxide synthase and consequent production of NO by infected macrophages has been shown to correlate with leishmaniasis resistance in the murine model as well as in human patients. Nitric oxide donors have been used successfully in the treatment of cutaneous leishmaniasis in humans, although their mechanisms of action are not fully understood. In the present work, the dose-dependent cytotoxic effects of the NO-donors S-nitroso-N-acetyl-l-cysteine (SNAC) and S-nitrosoglutathione (GSNO) against Leishmania were evaluated. GSNO inhibited the growth of Leishmania major and Leishmania amazonensis with in vitro 50% inhibitory concentrations (IC(50)) of 68.8+/-22.86 and 68.9+/-7.9 micromol L(-1), respectively. The IC(50) for SNAC against L. major and L. amazonensis were, respectively, 54.6+/-8.3 and 181.6+/-12.5 micromol L(-1). The leishmanicidal activity of GSNO, but not of SNAC, was reversed by ascorbic acid (AA) and dithiothreitol (DTT), suggesting that the mechanism of action of GSNO is related to the transnitrosation of parasite proteins. These results demonstrate that SNAC and GSNO have leishmanicidal activity, and are thus potential therapeutic agents against cutaneous leishmaniasis.  相似文献   

10.
Several anti-leishmanial drugs of choice are of plant origin. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The development of new compounds is urgently required.Aims of the studyTo determine the leishmanicidal activity of the Nuphar lutea plant extract against Leishmania major in vitro.Materials and methodsThe leishmanicidal activity of methanolic plant extract against L. major free living promastigotes and intracellular amastigotes was evaluated, using microscopic examinations and the enzymatic XTT assay.ResultsMethanolic extract of N. lutea was highly effective against both Leishmania promastigotes and L. amastigotes (IC50=2±0.12 μg/ml; ID50=0.65±0.023 μg/ml; LD50=2.1±0.096 μg/ml, STI=3.23). The extract at 1.25 μg/ml totally eliminated the intracellular parasites within 3 days of treatment. Also, a synergistic anti-leishmanial activity was demonstrated with N. lutea extract combined with the anti-leishmanial drug – paromomycin. The partially purified N. lutea active component was found to be a thermo-stable alkaloid(s) with no electrical charge and is resistant to boiling and to methanol, dichloromethane and xylene treatment.ConclusionsThe present study suggests that N. lutea might be a potential source of anti-leishmanial compounds.  相似文献   

11.
Efficacy of vaccination against cutaneous leishmaniasis in highly susceptible BALB/c mice was assessed comparatively by using radiation-attenuated promastigotes and colloidal Ag mixtures generated from a mixed Leishmania major (LV39) isolate (SLV39) and from a virulent cloned line (SVJ2) derived from the Jericho 2 L. major isolate. Dehydration-rehydration vesicle (DRV) liposomes were used as adjuvants. In optimization experiments phospholipid composition of DRV was varied, and the distearoyl derivative (DSPC) (liquid-crystalline phase transition temperature (Tc) 54 degrees C) of egg lecithin L-alpha-phosphatidylcholine was found to be superior to the dipalmitoyl derivative (DPPC, Tc 41.5 degrees C) and underivatized L-alpha-phosphatidylcholine (Tc -10 degrees C). The criteria studied were in vivo priming for a secondary in vitro proliferative response and the prepatency of lesion onset after L. major challenge of mice immunized once i.v. A single s.c. immunization with SLV39 either free or entrapped within DSPC liposomes primed spleen cells to produce significant levels of IL-3 when stimulated with SLV39 in vitro. In contrast, the i.v. route of immunization with the same Ag preparations led to little or no IL-3 production by the spleen cells. Despite development of significant T cell activation, both SLV39 and SVJ2 administered s.c., either free or entrapped within liposomes, were not protective. However, i.v. immunization four times with SVJ2 entrapped within DSPC liposomes induced a level of resistance comparable with that of 2 x 10(7) gamma-irradiated promastigotes in the stringent BALB/c L. major model. Although significant, protection conferred after i.v. immunization with SLV39/DSPC liposomes was less effective. These data therefore show that DSPC/DRV liposomes, although a good adjuvant for inducing protective immunity to cutaneous leishmaniasis, are not able to overcome the requirement for an i.v. route of immunization with the leishmanial Ag preparation. Additionally, they demonstrate a correlation between IL-3 secretion and non-protection. They also suggest that SVJ2 represents a better source of protective Ag than SLV39.  相似文献   

12.
Lymphokine (LK) treatment of resident peritoneal macrophages from C3H/HeN mice induced two antimicrobial activities against Leishmania tropica: increased resistance of activated macrophages to infection with amastigotes and intracellular destruction of those parasites that entered activated cells. The onset and duration of these two antimicrobial activities were quite different. Resistance to infection was observed as early as 4 hr after the addition of LK, became maximal at 8 hr, and persisted in a subpopulation of treated cells for as long as 72 hr. In contrast, intracellular killing occurred with as little as 4 hr of LK treatment after infection, and maximal killing was observed in cultures exposed to LK 24 hr. Intracellular killing capacity of lymphokine-treated cells was progressively lost in macrophages treated longer than 12 hr before exposure to parasites. This decay in ability to destroy intracellular L. tropica was also seen in macrophages cultured longer than 12 hr before LK treatment, and may reflect loss of macrophage responsiveness to LK with increasing time in vitro. Thus, treatment of macrophages with lymphokines induced both a stable change in cell-parasite interactions, resistance to infection, and a short-lived capacity to destroy intracellular amastigotes.  相似文献   

13.
Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4+ lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4 lymphocyte up to one month post-challenge suggesting that CD4 lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.  相似文献   

14.
Negatively charged liposomes, proposed as potential vaccine adjuvants, have been extensively studied in association with various antigens. In the present study, we investigated the adjuvanicity of negatively charged liposomes to enhance the protective immunity of membrane antigens of Leishmania donovani promastigotes (LAg). In comparison to the control mice immunized with phosphate-buffered saline and empty liposomes, immunization with free LAg led to significant levels of protection against infection with virulent promastigotes. Encapsulation of LAg in liposomes also induced effective protection. However, the level of protection by LAg-liposome was not significantly different from that induced by free LAg. Investigation of the immune responses showed, in contrast to free LAg, that immunization with LAg-liposome elicited strong antibody responses. IgG isotype analysis revealed the presence of all 4 isotypes. However, the titer of IgG1 was significantly higher than IgG2a, IgG2b, and IgG3. Following infection, stimulation of IgG and IgG isotypes did not differ in the different immunization groups. Delayed-type hypersensitivity (DTH) analysis after immunization showed significant induction by LAg and LAg-liposomes, in comparison to controls. With infection, again, the level of DTH in all the groups became almost comparable. Stimulation of insufficient cellular response, as reflected by DTH and potentiation of IgG1 over IgG2a, IgG2b, and IgG3 suggest a dominance of Th2 response with this liposome-antigen formulation, resulting in weak protection against visceral leishmaniasis.  相似文献   

15.
Toxoplasma gondii is an ubiquitous intracellular parasite, causative agent of toxoplasmosis, and a worldwide zoonosis for which an effective vaccine is needed. A group of proteins secreted by tachyzoites during host-cell invasion was isolated from the interaction medium. It induced the permeability of the cells as assessed by alpha-sarcin and consequently facilitated the entry of the parasite into the cells. SDS-PAGE of the purified proteins showed a pattern of four proteins of 67, 42, 32 and 27 kDa. MRC-5 cells incubated with the total protein and the different electroeluted bands endured a high cellular death in presence of alpha-sarcin. BALb/C mice immunized with the group of proteins had a mixed Th1/Th2 response and were protected upon challenge with the parasites.  相似文献   

16.
Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen‐activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo‐osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr‐197 and this phosphorylation requires LmjMPK2 activity. Lys‐42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild‐type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild‐type cells. This is the first report where a parasite aquaglyceroporin activity is post‐translationally modulated by a mitogen‐activated protein kinase.  相似文献   

17.
Protective immunity against cutaneous leishmaniasis is dependent on the induction of Th1/Tc1 immune responses resulting in efficient parasite elimination. In this review, the mechanisms leading to protection are discussed with special focus on the role of Leishmania major-infected dendritic cells (DC) in induction of Th1-dependent immunity. Murine strain-dependent differences between DC derived from Leishmania-susceptible as compared to resistant mice are highlighted.  相似文献   

18.
Resident peritoneal macrophages and macrophages elicited by injection of C3H/HeN mice with sterile inflammatory agents were exposed to amastigotes of Leishmania tropica in vitro and treated with lymphokines. Resident macrophages developed the capacity to kill intracellular parasites; microbicidal activity of activated resident cells ranged between 60 and 80%. In contrast, inflammatory macrophages responded poorly to lymphokines for intracellular killing of amastigotes; microbicidal activity of cells elicited with chronic inflammatory agents ranged between 0 and 45%. Defective intracellular killing of L. tropica by inflammatory macrophages was independent of the agent used to elicit the cells, but was clearly associated with the number of immature macrophages in the population. That intracellular killing capacity may reflect the presence of a killing mechanism in tissue-derived cells that is not yet developed in undifferentiated macrophages is supported by studies with peripheral blood monocytes: these cells were also incapable of eliminating intracellular amastigotes in the presence of potent activating factors. These observations on inflammatory macrophage interactions with amastigotes may provide important insights into the chronic nature of leishmanial disease.  相似文献   

19.
High concentrations of a murine T cell hybridoma culture supernatant containing macrophage-activating factor (MAF) rendered resident mouse peritoneal macrophages cytotoxic for P815 mastocytoma cells. The capacity of the hybridoma-derived MAF (MAFH) to induce tumoricidal activity increased 10(3) to 10(4)-fold when the lymphokine was encapsulated into liposomes. Combinations of MAFH and poly(I) X poly(C) acted synergistically to render macrophages potently cytotoxic. Subthreshold (nonactivating) concentrations of free or liposome-encapsulated MAFH increased the potency of free poly(I) X poly(C) and liposome encapsulated poly(I) X poly(C). Either as free agent or encapsulated in liposomes, single-stranded poly(I) or poly(C) did not activate macrophages in the presence or absence of MAFH. Double-stranded poly(I) X poly(C) was thus required for macrophage activation and synergism with MAFH.  相似文献   

20.
c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase that plays important regulatory roles in helper T cell differentiation. In the current study, we used Jnk1-deficient mice to examine the function of JNK during an in vivo pathogenic infection, leishmaniasis, which is strongly influenced by Th1/Th2 effector mechanisms. The data show that Jnk1-deficient mice, despite their usually genetically resistant background, were unable to resolve Leishmania infections. Jnk1-/- mice displayed reduced delayed-type hypersensitivity in response to the pathogen, which was associated with a T cell defect. We found that, although these mice can direct an apparent Th1-response, there is also simultaneous generation of Leishmania-specific Th2 responses, which possibly down-modulate protective Th1-mediated immune function. These findings demonstrate that the negative regulation of Th2 cytokine production by the JNK1 signaling pathway is essential for generating Th1-polarized immunity against intracellular pathogens, such as Leishmania major.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号