首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were undertaken to evaluate the changes in mRNA expression of prostaglandin H synthase (PGHS)-1 and -2 in murine gestational tissues during the latter half of pregnancy. Gestational tissues (decidual caps, membranes surrounding the fetus, and placentae), uterus, and cervix were collected from pregnant mice at days 12, 14, 16, 18, and 19 (am and pm) of gestation (n = 4), and total RNA was isolated and evaluated for PGHS-1 and PGHS-2 expression by northern blot analysis. Expression was normalized to GAPDH. There were no significant increases in PGHS-2 mRNA expression in any of the tissues studied through gestation. In contrast, expression of PGHS-1 mRNA increased significantly at term in the uterus and fetal membranes. In the placenta, mRNA for PGHS-1 was elevated at day 18 and remained elevated over the remainder of the study. These findings suggest that, in the mouse, increased production of PGs by uterine and intrauterine tissues during pregnancy is associated with up-regulation of PGHS-1 and not PGHS-2.  相似文献   

2.
Various tyrosyl radicals generated by reaction of both native and indomethacin-inhibited ovine prostaglandin H synthase-1 with ethyl hydrogen peroxide were examined by using high-field/high-frequency EPR spectroscopy. The spectra for the initially formed tyrosyl radical commonly referred to as the "wide-doublet" species and the subsequent "wide-singlet" species as well as the indomethacin-inhibited "narrow-singlet" species were recorded at several frequencies and analyzed. For all three species, the g-values were distributed. In the case of the wide doublet, the high-field EPR spectra indicated that dominant hyperfine coupling was likely to be also distributed. The g(x)-values for all three radicals were found to be consistent with a hydrogen-bonded tyrosyl radical. In the case of the wide-doublet species, this finding is consistent with the known position of the radical and the crystallographic structure and is in contradiction with recent ENDOR measurements. The high-field EPR observations are consistent with the model in which the tyrosyl phenyl ring rotates with respect to both the protein backbone and the putative hydrogen bond donor during evolution from the wide-doublet to the wide-singlet species. The high-field spectra also indicated that the g-values of two types of narrow-singlet species, self-inactivated and indomethacin-inhibited, were likely to be different, raising the possibility that the site of the radical is different or that the binding of the inhibitor perturbs the electrostatic environment of the radical. The 130 GHz pulsed EPR experiments performed on the wide-doublet species indicated that the possible interaction between the radical and the oxoferryl heme species was very weak.  相似文献   

3.
4.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

5.
Several studies have shown that interleukin-4 (IL-4) down-regulates synthesis of prostaglandin E2 (PGE2). We evaluated the mechanisms for this suppression in human alveolar macrophages (HAMs). Normal HAMs were obtained from healthy nonsmoking volunteers. The cells either remained unstimulated, or were exposed to 10 μg/ml of lipopolysaccharide (LPS) and/or various amounts of IL-4. LPS alone induced the synthesis of large amounts of PGE2 and prostaglandin H synthase-2 (PGHS-2) protein. This effect of LPS was suppressed by increasing amounts of IL-4. Expression of LPS-induced PGHS-2 mRNA was also inhibited by IL-4. In addition, IL-4 inhibited expression of CD14, which is a receptor for LPS bound to the LPS-binding protein (LBP). We conclude that IL-4 down-regulates LPS-induced release of PGE2, by reducing expression of the enzyme, PGHS-2. One potential mechanism for this effect of IL-4 is a reduced expression of CD14, which is the LPS-LBP receptor. © 1995 Wiley-Liss Inc.  相似文献   

6.
We have developed a protocol to purify apo-ovine (o) prostaglandin endoperoxide H(2) synthase-1 (PGHS-1) to homogeneity from ram seminal vesicles. The resulting apo enzyme can then be reconstituted with Co(3+)-protoporphyrin IX instead of Fe(3+)-protoporphyrin IX to produce a native-like, but functionally inert, enzyme suitable for the production of enzyme:fatty acid substrate complexes for biophysical characterization. Co(3+)-protoporphyrin IX reconstituted oPGHS-1 (Co(3+)-oPGHS-1) displays a Soret band at 426 nm that shifts to 406 nm upon reduction. This behavior is similar to that of cobalt-reconstituted horseradish peroxidase and myoglobin and suggests, along with resonance Raman spectroscopy, that the Co(3+)-protoporphyrin IX group is one in a six-coordinate, cobalt(III) state. However, Co(3+)-oPGHS-1 does not display cyclooxygenase or peroxidase activity, nor does the enzyme produce prostaglandin products when incubated with [1-(14)C]arachidonic acid. The cocrystallization of Co(3+)-oPGHS-1 and the substrate arachidonic acid (AA) has been achieved using sodium citrate as the precipitant in the presence of the nonionic detergent N-octyl-beta-d-glucopyranoside. Crystals are hexagonal, belonging to the space group P6(5)22, with cell dimensions of a = b = 181.69 A and c = 103.74 A, and a monomer in the asymmetric unit. GC-MS analysis of dissolved crystals indicates that unoxidized AA is bound within the crystals.  相似文献   

7.
8.
Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages.   总被引:13,自引:0,他引:13  
Prostaglandin H synthase is a key enzyme in the formation of prostaglandins and thromboxane from arachidonic acid. The recent cloning of a second prostaglandin H synthase gene, prostaglandin H synthase-2, which is distinct from the classic prostaglandin H synthase-1 gene, may dramatically alter our concept of how cells regulate prostanoid formation. We have recently shown that the enhanced production of prostanoids by lipopolysaccharide-primed alveolar macrophages involves the induction of a novel prostaglandin H synthase (J. Biol. Chem., (1992), 267, 14547-14550). We report here that the novel PGH synthase induced by lipopolysaccharide in alveolar macrophages is prostaglandin H synthase-2.  相似文献   

9.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

10.
11.
Biosynthesis of prostanoid lipid signaling agents from arachidonic acid begins with prostaglandin H synthase (PGHS), a hemoprotein in the myeloperoxidase family. Vertebrates from humans to fish have two principal isoforms of PGHS, termed PGHS-1 and-2. These two isoforms are structurally quite similar, but they have very different pathophysiological roles and are regulated very differently at the level of catalysis. The focus of this review is on the structural and biochemical distinctions between PGHS-1 and-2, and how these differences relate to the functional divergence between the two isoforms.  相似文献   

12.
Wu G  Kulmacz RJ  Tsai AL 《Biochemistry》2003,42(46):13772-13777
The peroxidase and cyclooxygenase activities of prostaglandin H synthase-1 (PGHS-1) both become irreversibly inactivated during reaction with peroxide. Sequential stopped-flow absorbance measurements with a chromogenic peroxidase cosubstrate previously were used to evaluate the kinetics of peroxidase inactivation during reaction of PGHS-1 with peroxide [Wu, G., et al. (1999) J. Biol. Chem. 274, 9231-7]. This approach has now been adapted to use a chromogenic cyclooxygenase substrate to analyze the detailed kinetics of cyclooxygenase inactivation during reaction of PGHS-1 with several hydroperoxides. In the absence of added reducing cosubstrates, which maximizes the levels of oxidized enzyme intermediates expected to lead to inactivation, cyclooxygenase activity was lost as fast as, or somewhat faster than, peroxidase activity. Cyclooxygenase inactivation kinetics appeared to be sensitive to the structure of the peroxide used. The addition of reducing cosubstrate during reaction of PGHS-1 with peroxide protected the peroxidase activity to a much greater degree than the cyclooxygenase activity. The results suggest a new concept of PGHS inactivation: that distinct damage can occur at the two active sites during side reactions of Intermediate II, which forms during reaction of PGHS with peroxide and which contains two oxidants, a ferryl heme in the peroxidase site, and a tyrosyl free radical in the cyclooxygenase site.  相似文献   

13.
Growth factors may play a role in the formation of prostaglandins (PG) by cerebral blood vessels during development or reaction to injury. In smooth muscle cultures isolated from murine cerebral microvessels PG production was induced with either serum or epidermal growth factor (EGF). Prostaglandin H synthase (PGHS) activity peaked at 6 h after the addition of 10% serum or 50 ng/ml EGF. Increases in expression of PGHS-1 mRNA were small (7- to 10-fold) compared with PGHS-2 (30- to 120-fold), and the induction patterns were different for serum and EGF. An increase in PGHS-2 message was detected by 0.5 h of adding either agent, but peak induction occurred earlier for EGF than for serum, 1 h vs. 3 h, respectively. The response to either stimulus had returned to prestimulation levels by 12 h. The induction of PGHS-2 protein was also transient, but followed a more delayed time course (peak levels at 6 h). Induction of activity, message, and protein by either agent was blocked by 1 μM dexamethasone and attenuated by genistein (100 μM), a nonspecific tyrosine kinase inhibitor. Tyrphostin 47, a more selective EGF receptor tyrosine kinase inhibitor, dose-dependently inhibited EGF-stimulated PGHS activity, completely abolishing PG production at 100 μM. However, this inhibitor had no effect on serum-stimulated PG production. Curiously, 100 μM tyrphostin 47 enhanced EGF-induced PGHS-2 mRNA and protein expression. These data suggest that EGF induces the expression of PGHS-2 in cerebromicrovascular smooth muscle by a mechanism that requires tyrosine kinase activity and that is distinct from serum. J. Cell. Physiol. 176:495–505, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
By using the technique of site-directed spin labeling combined with EPR spectroscopy, we have observed that binding of arachidonic acid and nonsteroidal anti-inflammatory drugs induces conformational changes in the human prostaglandin endoperoxide H(2) synthase enzyme (PGHS-2). Line shape broadening resulting from spin-spin coupling of nitroxide pairs introduced into the membrane-binding helices of PGHS-2 was used to calculate the inter-helical distances and changes in these distances that occur in response to binding various ligands. The inter-residue distances determined for the PGHS-2 holoenzyme using EPR were 1-7.9 A shorter than those of the crystal structure of the PGHS-2 holoenzyme. However, inter-helical distances calculated and determined by EPR for PGHS-2 complexed with arachidonic acid, flurbiprofen, and SC-58125 were in close agreement with those obtained from the cognate crystal structures. These results indicate that the structure of the solubilized PGHS-2 holoenzyme measured in solution differs from the crystal structure of PGHS-2 holoenzyme obtained by x-ray analysis. Furthermore, binding of ligands induces a conformational change in the holo-PGHS-2, converting it to a structure similar to those obtained by x-ray analysis. Proteolysis protection assays had previously provided circumstantial evidence that binding of heme and non-steroidal anti-inflammatory drugs alters the conformation of PGHS, but the present experiments are the first to directly measure such changes. The finding that arachidonate can also induce a conformational change in PGHS-2 was unexpected, and the magnitude of changes suggests this structural flexibility may be integral to the cyclooxygenase catalytic mechanism.  相似文献   

16.
Rat carrageenin-induced pleurisy was used to clarify the role of prostaglandin H synthase (PGHS)-2 in acute inflammation. Intrapleural injection of 0.2 ml of 2% λ-carrageenin induced accumulation of exudate and infiltration of leukocytes into the pleural cavity. When PGHS-1 and -2 proteins in the pleural exudate cells were analyzed by Western blot analysis, PGHS-2 was detectable from 1 hr after carrageenin injection. Its level rose sharply, remained high from 3 to 7 hr after injection, and then fell to near the detection limit. PGHS-1 was also detected, but kept almost the same level throughout the course of the pleurisy. Levels of prostaglandin (PG) E2 and thromboxane (TX) B2 in the exudate increased from hour 3 to hour 7, and then declined. Thus, the changes of the level of PGE2 were closely paralleled those of PGHS-2.The selective PGHS-2 inhibitors NS-398, nimesulide and SC-58125 suppressed the inflammatory reaction and caused a marked decrease in the level of PGE2 but not in those of TXB2 and 6-keto-PGF. These results suggest that the PGHS-2 expressed in the pleural exudate cells may be involved in PGE2 formation at the site of inflammation.  相似文献   

17.
Prostaglandin-endoperoxide H synthase-2 (PGHS-2) shows peroxidase activity to promote the cyclooxygenase reaction for prostaglandin H2, but one of the highly conserved amino acid residues in peroxidases, distal Arg, stabilizing the developing negative charge on the peroxide through a hydrogen-bonding interaction, is replaced with a neutral amino acid residue, Gln. To characterize the peroxidase reaction in PGHS-2, we prepared three distal glutamine (Gln-189) mutants, Arg (Gln-->Arg), Asn (Gln-->Asn), and Val (Gln-->Val) mutants, and examined their peroxidase activity together with their structural characterization by absorption and resonance Raman spectra. Although a previous study (Landino, L. M., Crews, B. C., Gierse, J. K., Hauser, S. D., and Marnett, L. (1997) J. Biol. Chem. 272, 21565-21574) suggested that the Gln residue might serve as a functionally equivalent residue to Arg, our current results clearly showed that the peroxidase activity of the Val and Asn mutants was comparable with that of the wild-type enzyme. In addition, the Fe-C and C-O stretching modes in the CO adduct were almost unperturbed by the mutation, implying that Gln-189 might not directly interact with the heme-ligated peroxide. Rather, the peroxidase activity of the Arg mutant was depressed, concomitant with the heme environmental change from a six-coordinate to a five-coordinate structure. Introduction of the bulky amino acid residue, Arg, would interfere with the ligation of a water molecule to the heme iron, suggesting that the side chain volume, and not the amide group, at position 189 is essential for the peroxidase activity of PGHS-2. Thus, we can conclude that the O-O bond cleavage in PGHS-2 is promoted without interactions with charged side chains at the peroxide binding site, which is significantly different from that in typical plant peroxidases.  相似文献   

18.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

19.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号