首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial characterization of a lysU mutant of Escherichia coli K-12.   总被引:5,自引:3,他引:2       下载免费PDF全文
The Escherichia coli K-12 strain GNB10181 shows no inducible lysyl-tRNA synthetase (LysRS) activity. Two-dimensional gel electrophoretic analysis of the polypeptides synthesized by this strain indicates that the normal lysU gene product, LysU, is absent. When both GNB10181 and its parent, MC4100, were grown at elevated temperatures (42 to 45 degrees C) no significant difference between their growth rates was observed. The lysU mutation was transferred to other E. coli K-12 backgrounds by using P1 transduction. The lysU transductants behaved comparably to their lysU+ parents at different growth temperatures. Therefore, the LysU proteins does not appear to be essential for growth at high temperatures, at least under the conditions examined here. In addition, lysU transductants were found to be defective for inducible lysine decarboxylase, (LDC), inducible arginine decarboxylase (ADI), and melibiose utilization (Mel), which are all missing in GNB10181. Complementation of the above missing functions was achieved by using the Clarke-Carbon plasmids pLC4-5 (LysU LDC) and pLC17-38 (LysU Mel ADI). From these experiments, it appears that GNB10181 has suffered a chromosomal deletion between 93.4 and 93.7 min, which includes the lysU gene. By using plasmid pLC17-38, the position of ADI on two-dimensional gels was identified. Finally, lysS delta lysU double mutants were constructed which can potentially be used as positive selection agents for the isolation of LysRS genes from other sources.  相似文献   

2.
In Escherichia coli K-12, expression of the lysU gene is regulated by the lrp gene product, as indicated by an increase in the level of lysyl-tRNA synthetase activity and LysU protein in an lrp mutant. Comparison of the patterns of protein expression visualized by two-dimensional gel electrophoresis indicated that LysU is present at higher levels in an lrp strain than in its isogenic lrp+ parent. The purified lrp gene product was shown to bind to sites upstream of the lysU gene and to protect several sites against DNase I digestion. A region extending over 100 nucleotides, between 60 and 160 nucleotides upstream from the start of the lysU coding sequence, showed altered sensitivity to DNase I digestion in the presence of the Lrp protein. The extent of protected DNA suggests a complex interaction of Lrp protein and upstream lysU DNA.  相似文献   

3.
4.
Abstract The gene encoding lysyl-tRNA synthetase ( lysS ) in Mycoplasma hominis was cloned and sequenced. The gene was found to have an open reading frame of 1466 bp encoding a polypeptide with a predicted molecular mass of 57 kDa. The amino acid sequence showed 44.3% and 43.7% identity to the Escherichia coli lysyl-tRNA synthetases, encoded by lysS and lysU . Only one lysyl-tRNA synthetase encoding gene was found in M. hominis . The G+C content of the gene was found to be 28.6%, which is significantly lower than in other prokaryotes. The gene was located 4 kb upstream of the M. hominis PG21 rRNA B operon.  相似文献   

5.
Most prototrophic strains of Escherichia coli become restricted for methionine at 44 degrees C. A mutant strain (RG62 metK) in which the level of S-adenosylmethionine synthetase activity is only 10 to 20% of normal shows constitutive expression of one of the heat shock proteins, the lysU gene product, lysyl-tRNA synthetase form II, at 37 degrees C. These findings suggested a possible linkage between methionine metabolism and heat shock. We examined the induction of heat shock polypeptides in strain RG62 (metK) and in its parent, RG (metK+), from which it was derived by spontaneous mutation. Exponential-phase cultures of the two strains were pulse-labeled with [3H]leucine shortly after a shift from 37 to 44 degrees C, and the total cellular polypeptides were examined by two-dimensional electrophoresis. The results confirmed the constitutive production of the lysU gene product previously reported for strain RG62, but also revealed that the induction of 2 of the 17 heat shock polypeptides, C14.7 and G13.5, was markedly depressed. Otherwise the heat shock induction pattern was similar in timing and magnitude in the two strains. Transformation of the mutant strain with a plasmid, pK8, containing the metK coding sequence and promoter region as a 1.8-kilobase insert into pBR322 restored normal induction of C14.7 and G13.5, but did not prevent constitutive expression of the lysU gene product in the medium required for growth of this strain. The three heat shock polypeptides abnormally controlled in strain RG62 are the three polypeptides which are not induced when rapid synthesis of the htpR gene product is induced by isopropyl-beta-D-thiogalactopyranoside at 28 degree C (R. A. VanBogelen, M. A. Acton, and F. C. Neidhardt, Genes Dev. 1:525-531, 1987). We postulate that induction of these three polypeptides involves metabolic signals in addition to the synthesis of the htpR gene product and that strain RG62 (metK) fails to produce the signals involved in induction of C14.7 and G13.5 on a shift-up in temperature and produces the signal related to lysU induction even at 37 degree C.  相似文献   

6.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

7.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

8.
Fast-growing revertants have been selected from a slow-growing lysyl-tRNA synthetase mutant. All of the revertants had increased lysyl-tRNA synthetase activity compared with the mutant (5- to 85-fold), and in some revertants this amounted to two to three times the wild-type synthetase activity. Two-dimensional gel electrophoresis of a whole-cell extract of revertant IH2018 (1.5- to 2-fold wild-type synthetase activity) showed that the increase in synthetase activity is due to the induction of cryptic lysyl-tRNA synthetase forms and not to a change in the constitutive lysyl-tRNA synthetase. Genetic studies have shown that a locus termed rlu (for regulation of lysU ) which is cotransducible with purF at 49.5 min influences the amount of the cryptic lysyl-tRNA synthetase.  相似文献   

9.
Y Nakamura  K Kawakami 《Biochimie》1992,74(6):581-584
Lysyl-tRNA synthetases are synthesized from two distinct genes in E coli, lysS and lysU, but neither gene product has been purified distinctively by using overproducing systems. The lysS gene has been identified by a herC mutation which restores maintenance of the mutant ColE1 replicon. The herC gene product was overproduced by using a tac promoter fusion and purified to homogeneity. The purified HerC protein possesses a lysyl-tRNA synthetase activity as predicted by the sequence identity of herC to lysS. The procedure is useful for rapid mass-scale purification of lysyl-tRNA synthetase.  相似文献   

10.
In Escherichia coli, two distinct lysyl-tRNA synthetase species are encoded by two genes: the constitutive lysS gene and the thermoinducible lysU gene. These two genes have been isolated and sequenced. Their nucleotide and deduced amino acid sequences show 79% and 88% identity, respectively. Codon usage analysis indicates the lysS product being more efficiently translated than the lysU one. In addition, the lysS sequence exactly coincides with the sequence of herC, a gene which is part of the prfB-herC operon. In contrast to the recent proposal of Gampel and Tzagoloff (1989, Proc. Natl. Acad. Sci. USA 86, 6023-6027), the lysU sequence is distinct from the open reading frame located adjacent to frdA, although large homologies are shared by these two genes.  相似文献   

11.
A hybrid ColE1 plasmid from the Clarke-Carbon colony bank with a 7-kilobase insertion was found to encode the inducible lysyl-tRNA synthetase along with the catabolic enzyme lysine decarboxylase. The gene for the inducible synthetase, lysU, must lie within 0.3 min of the lysine decarboxylase gene, cadA, at 92 min on the Escherichia coli genetic map.  相似文献   

12.
The lysyl-tRNA synthetase (LysRS) system of Escherichia coli K-12 consists of two genes, lysS, which is constitutive, and lysU, which is inducible. It is of importance to know how extensively the two-gene LysRS system is distributed in procaryotes, in particular, among members of the family Enterobacteriaceae. To this end, the enterics E. coli K-12 and B; E. coli reference collection (ECOR) isolates EC2, EC49, EC65, and EC68; Shigella flexneri; Salmonella typhimurium; Klebsiella pneumoniae; Enterobacter aerogenes; Serratia marcescens; and Proteus vulgaris and the nonenterics Pseudomonas aeruginosa and Bacillus megaterium were grown in AC broth to a pH of 5.5 or less or cultured in SABO medium at pH 5.0. These growth conditions are known to induce LysRS activity (LysU synthesis) in E. coli K-12. Significant induction of LysRS activity (twofold or better) was observed in the E. coli strains, the ECOR isolates, S. flexneri, K. pneumoniae, and E. aerogenes. To demonstrate an association between LysRS induction and two distinct LysRS genes, Southern blotting was performed with a probe representing an 871-bp fragment amplified from an internal portion of the coding region of the lysU gene. In initial experiments, chromosomal DNA from E. coli K-12 strain MC4100 (lysS+ lysU+) was double digested with either BamHI and HindIII or BamHI and SalI, producing hybridizable fragments of 12.4 and 4.2 kb and 6.6 and 5.2 kb, respectively. Subjecting the chromosomal DNA of E. coli K-12 strain GNB10181 (lysS+ delta lysU) to the same regimen established that the larger fragment from each digestion contained the lysU gene. The results of Southern blot analysis of the other bacterial strains revealed that two hybridizable fragments were obtained from all of the E. coli and ECOR collection strains examined and S. flexneri, K. pneumoniae, and E. aerogenes. Only one lysU homolog was found with S. typhimurium and S. marcescens, and none was obtained with P. vulgaris. A single hybridizable band was found with both P. aeruginose and B, megaterium. These results show that the dual-gene LysRS system is not confined to E. coli K-12 and indicate that it may have first appeared in the genus Enterobacter.  相似文献   

13.
The constitutive lysyl-tRNA synthetase gene (lysS) was mapped at 62.1 min on the Escherichia coli chromosome by a combination of conjugation and transduction, with physical confirmation by two-dimensional gel electrophoresis. Revertant analysis suggests that the altered isoelectric point and the low amount of the mutant LysS protein may be due to a single mutational event.  相似文献   

14.
In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.  相似文献   

15.
16.
With the exception of Escherichia coli lysyl-tRNA synthetase, the genes coding for the different aminoacyl-tRNA synthetases in procaryotes are always unique. Here we report on the occurrence and cloning of two genes (thrSv and thrS2), both encoding functional threonyl-tRNA synthetase in Bacillus subtilis. The two proteins share only 51.5% identical residues, which makes them almost as distinct from each other as each is from E. coli threonyl-tRNA synthetase (42 and 47%). Both proteins complement an E. coli thrS mutant and effectively charge E. coli threonyl tRNA in vitro. Their genes have been mapped to 250 degrees (thrSv) and 344 degrees (thrS2) on the B. subtilis chromosome. The regulatory regions of both genes are quite complex and show structural similarities. During vegetative growth, only the thrSv gene is expressed.  相似文献   

17.
Summary TheKRS1 gene encodes the cytoplasmic form ofSaccharomyces cerevisiae lysyl-tRNA synthetase. TheKRS1 locus has been characterized. The lysyl-tRNA synthetase gene is unique in the yeast genome. The gene is located on the right arm of chromosome IV and disruption of the open reading frame leads to lethality. These results contrast with the situation encountered inEscherichia coli where lysyl-tRNA synthetase is coded by two distinct genes,lysS andlysU, and further address the possible biological significance of this gene duplication. The nucleotide sequence of the 3′-flanking region has been established. It encodes a long open reading frame whose nucleotide and amino acid structures are almost identical toPMR2, a cluster of tandemly repeated genes coding for P-type ion pumps. The sequence alterations relative toPMR2 are mainly located at the C-terminus of the protein.  相似文献   

18.
M Mirande 《FEBS letters》1991,283(1):1-3
Recent data pertaining to different research areas, aminoacyl-tRNA synthetases and replication of ColE1 plasmids, have provided mutually attractive prospects. The gene encoding Escherichia coli lysyl-tRNA synthetase was first isolated as a host suppressor mutation that restores replication of a mutant Co1E1 replicon. Comparison of RNAII and tRNA(Lys) suggests that lysyl-tRNA synthetase is involved in the formation of the displacement loop required for ColE1 plasmids replication and provides major identity elements of tRNA(Lys).  相似文献   

19.

Background  

Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study.  相似文献   

20.
Adenylosuccinate synthetase, encoded by the purA gene of Escherichia coli, catalyzes the first committed step toward AMP in the de novo purine biosynthetic pathway and plays an important role in the interconversion of purines. A 3.2-kb DNA fragment, which carries the purA gene, was cloned into the temperature-inducible, high-copy-number plasmid vector, pMOB45. Upon temperature induction, cells containing this plasmid produce adenylosuccinate synthetase at approximately 40 times the wild-type level. A scheme is presented for the purification of the overproduced adenylosuccinate synthetase to homogeneity in amounts sufficient for studies of its structure and mechanism. The wild-type and the overproduced adenylosuccinate synthetase enzyme preparations were judged to be identical by the following criteria. The amino acid sequence at the N-terminus of the overproduced enzyme proved identical to the corresponding sequence of the wild-type enzyme. Michaelis constants for both the wild-type and overproduced enzyme preparations were the same. And (iii) both proteins shared similar chromatographic behavior and the same mobility during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Results from size-exclusion chromatography and SDS-polyacrylamide gel electrophoresis suggest that adenylosuccinate synthetase exists as a dimer of identical, 48,000-Da, subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号