首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the ciliary apparatus of multiciliated epidermal cells in larval and adult sipunculids is described and the phylogenetic implications discussed. The pelagosphera of Apionsoma misakianum has a dense cover of epidermal cilia on the head region. The cilia have a long, narrow distal part and two long ciliary rootlets, one rostrally and one vertically orientated. The adult Phascolion strombus has cilia on the nuchal organ and on the oral side of the tentacles. These cilia have a narrow distal part as in the A. misakianum larva, but the ciliary rootlets have a different structure. The first rootlet on the anterior face of the basal body is very short and small. The second, vertically orientated rootlet is long and relatively thick. The two ciliary rootlets present in the larval A. misakianum are similar to the basal metazoan type of ciliary apparatus of epidermal multiciliated cells and thus likely represent the plesiomorphic state. The minute first rootlet in the adult P. strombus is viewed as a consequence of a secondary reduction. No possible synapomorphic character with the phylogenetically troublesome Xenoturbella was found.  相似文献   

2.
Abstract. The ultrastructure of the ciliary apparatus of multiciliated epidermal cells of the trochophore of Epimenia babai and the adult of Strophomenia scandens was studied. The trochal cirri of E. babai consists of long cilia with unspecialized tips. The surfaces between the trochs are sparsely covered with shorter cilia of similar structure except for length. In the adult of S. scandens , the foot is covered by a dense mat of cilia with blunt electron-dense tips. In both E. babai and S. scandens , all cilia have two perpendicularly orientated rootlets. This condition is similar to that of the Chaetodermomorpha (=Caudofoveata) and Polyplacophora. In other molluscs studied to date, the cilia of multiciliated epidermal cells have a single rootlet or a derivative thereof. The presence of two ciliary rootlets likely represents the basal plesiomorphic state for the Bilateria. The existence of this character in the Neomeniomorpha, Chaetodermomorpha, and Polyplacophora is congruent with the hypothesis of a basal position of these taxa within the Mollusca.  相似文献   

3.
The epidermis of Xenoturbella bocki Westblad was studied by scanning and transmission electron microscopy. Two cell types predominate in the epidermis: multiciliated epidermal cells and non-ciliated or monociliated gland cells. A conspicuous feature is the dense ciliary coverage and the numerous gland cell openings. Xenoturbella has a characteristic pattern of axonemal filament termination in the distal tips of their cilia. Each epidermal cilium has the typical 9 + 2 patten through the major part of its shaft. Near the tip there is a shelf at which doublets 4–7 terminate. Doublets 1, 2, 3, 8 and 9 continue into the thinner distal part of the cilium. A similar shelf in cilia is known only from the turbellarian orders Nemertodermatida and Acoela, and hence may be an apomorphic feature which indicates a close relationship between Xenoturbellida, Nemertoder-matida and Acoela. The basal body is provided with a so-called basal foot which has a cross-striated appearance and an expanded distal plate that seems to act as a microtubule organizing center. Approximately 15–25 microtubuli radiate from the endplate of the basal foot to the basal bodies caudally. The arrangement of basal foot and ciliary rootlets in Xenoturbella differs from that of Acoela and related orders in that there are two striated rootlets only (an anterior and a posterior one), rather than one main rootlet and two lateral rootlets.  相似文献   

4.
Craspedella has a non-ciliated epidermis with nuclei located in the epidermis and with short microvilli. There is a thin basal lamina and thick underlying fibrous matrix. Rhabdites are secreted through ducts lined by microtubules. Multiciliate sense receptors consist of bundles of dendrites in a depression of the epidermis. Each dendrite has a cilium with a cross-striated rootlet; there are no electron-dense collars. Spermatozoa have peripheral microtubules which in cross-section are arranged in a ring-like or spiral fashion, numerous electron-dense granules, mitochondria and a nucleus; axonemes of the 9 +'1'type are free for most of their length. Centrioles occur in some nerve fibres. In Didymorchis parts of the epidermis are ciliated and epidermal perikarya are 'insunk', connected to the surface part of the epidermis by a single cytoplasmic process. Epidermal cilia have cross-striated vertical and horizontal rootlets. In the ciliary tips a short electron-dense rod along the central pair of tubules extends to the tip, where it widens to become a terminal plate; peripheral doublets gradually disappear by losing their microtubules. Receptors observed are uniciliate. Spermatozoa are as in Craspedella . Ultrastructural evidence indicates that Craspedella and Didymorchis arc closely related and belong to the Rhabdocoela.  相似文献   

5.
The ciliary rootlet maintains long-term stability of sensory cilia   总被引:3,自引:0,他引:3       下载免费PDF全文
The striated ciliary rootlet is a prominent cytoskeleton originating from basal bodies of ciliated cells. Although a familiar structure in cell biology, its function has remained unresolved. In this study, we carried out targeted disruption in mice of the gene for rootletin, a component of the rootlet. In the mutant, ciliated cells are devoid of rootlets. Phototransduction and ciliary beating in sensory and motile cilia initially exhibit no apparent functional deficits. However, photoreceptors degenerate over time, and mutant lungs appear prone to pathological changes consistent with insufficient mucociliary clearance. Further analyses revealed a striking fragility at the ciliary base in photoreceptors lacking rootlets. In vitro assays suggest that the rootlet is among the least dynamic of all cytoskeletons and interacts with actin filaments. Thus, a primary function of the rootlet is to provide structural support for the cilium. Inasmuch as photoreceptors elaborate an exceptionally enlarged sensory cilium, they are especially dependent on the rootlet for structural integrity and long-term survival.  相似文献   

6.
Cilia and associated structures on the gill lamellae on the ctenidum of Chaetoderma nitidulum were studied. The gill cilia are very long and have a whip-like narrow portion distally, where only three microtubule doublets continue to the distal tip. In the transition zone between the cilium and the centriolar triplet section of the basal body there is a dense plate, an aggregation of granules and a ciliary necklace with four strands. Further down there is a short cross-striated basal foot and two conical cross-striated ciliary rootlets. The first rootlet is flattened and directed forward. It connects distally with the basal feet of other adjacent cilia. The second rootlet is rounded in cross-section and vertically directed. The epithelial structures of Chaetoderma show similarities with other Mollusca. We found no structural characters that could support the current hypothesis of a close relationship of Xenoturbella to the Mollusca.  相似文献   

7.
In Notocaryoturbella bigermaria, Otoplana truncaspina and Paroto-planella heterorhabditica three types of epidermal receptors are recognized. Type I: with a single cilium running in a duct, piercing the distal dendrite process of the receptor. The internal wall of the dendrite process has eight ridges with longitudinal filaments lying inside them. The ciliary basal body lacks a longitudinal rootlet but is encircled by a thin annular formation. Type II: with a single (A) or several (B) cilia which protrude from the outer epithelial surface and are provided with a large and striped rootlet. Both types are considered as mechanoreceptors. Type III: with two or more short and stumpy cilia devoid of rootlets and displaying the usual 9 + 2 pattern in the proximal part only. They are considered as chemoreceptors.  相似文献   

8.
ASPECTS OF CILIARY FINE STRUCTURE IN EUPLOTES PATELLA   总被引:9,自引:8,他引:1       下载免费PDF全文
1. The functional unity of cirri and membranelles can result structurally only from extensions of the ciliary membrane. 2. The pellicle is composed of an outer pellicular membrane and an inner cytoplasmic membrane. 3. The ciliary rootlets are composed of numerous filaments 120 A in diameter with central areas of low density. They have no periodic structure. 4. The ciliary membrane is a double-layered structure continuous with the pellicular membrane. The cilia show the typical arrangement of nine double, peripheral and two single, central fibrils. All fibrils pass into the basal region, the peripheral ones joining with the rootlet filaments, while the central fibrils from the extreme proximal position of the basal region turn back toward the pellicle and appear to unite just beneath the cytoplasmic membrane. 5. The cilia (300 mµ diameter) taper at their tips to a diameter at least as small as 50 mµ. At a diameter of about 150 mµ, the fibrils begin to show a reduction in number. 6. The central ciliary fibrils may determine the possible directions of ciliary beat. These fibrils show an intrafibrillar structure in their basal portion, which involves regularly spaced 40 A granules. 7. These observations on Euplotes, together with the other evidence cited, are consistent with the hypothesis that ciliary motion is produced by the contraction of the peripheral fibrils, while the central fibrils perhaps determine the plane in which the cilia can bend.  相似文献   

9.
Comparative ultrastructure of the pharynx simplex in turbellaria   总被引:9,自引:1,他引:9  
David A. Doe 《Zoomorphology》1981,97(1-2):133-193
Summary The simple pharynges in thirteen species of Turbellaria in the orders Macrostomida, Haplopharyngida, Catenulida, and Acoela have been studied by electron microscopy. After consideration of the functional aspects of the pharynx simplex, the relationship of the pharynx simplex ultrastructure to the phylogeny of the above mentioned groups is analyzed.The Haplopharyngida and Macrostomida are united as a group by the following characters: a pharynx transition zone of 1–5 circles of insunk cells with modified ciliary rootlets or no cilia, pharynx sensory cells without stereocilia collars and with a variable number of cilia, a prominent nerve ring with more than 30 axons circling the pharynx at the level of the beginning of the pharynx proper distal to the gland ring, 2 or more gland cell types in the pharynx, with at least two layers of muscle present and the longitudinal muscles derived from regular and special body wall circular muscles and a prominent post-oral nerve commissure. This specific arrangement can be distinguished from the other pharynx simplex types and is called the pharynx simplex coronatus.The catenulid pharynx simplex is characterized by the lack of a prominent nerve ring, no prominent post-oral commissure, a transition zone with epidermal type ciliary rootlets, recessed monociliated sensory cells, and one or no type of pharynx gland cell. The Acoela are specialized because of the epidermal type rootlets in the pharynx proper. They also lack a transition zone and a prominent nerve ring and have monociliated sensory cells different from the catenulid type.Ultrastructural characters of the pharynx simplex support the view that the Haplopharyngida-Macrostomida are monophyletic. The more primitive catenulid pharynx probably arose from a common ancestral pool with the Haplopharyngida and Macrostomida, although it does not appear possible presently to establish a clear monophyletic line for these forms. The various pharynx types within the Acoela appear to indicate independent origins with no clear link to the basic pharynx simplex type in the three other orders.Abbreviations Used in Figures a nerve axon - ar accessory rootlet - bb basal body - bn brain-nerve ring commissure - c caudal rootlet - ce centriole - ci cilium - cm circular muscle - cp ciliary pit - cu cuticle - cw cell web - d dictyosome - dp proximal pharynx proper cell - e epidermis - er rough endoplasmic reticulum - f fibrous rod - g gastrodermis - gc gastrodermal gland cell - he heterochromatin - i intercellular matrix - lc lateral nerve cord - lm longitudinal muscle - m mitochondria - mo mouth - mt microtubules - mv microvilli - n nucleus - nr nerve ring - ns neurosecretory granules - p pharynx proper - ph pharynx - po post-oral commissure - r rostral rootlet - rm radial muscle - s sphincter - sc sensory cell - sj septate junction - sr sensory rootlet - t transition zone - u ultrarhabdite - v vertical rootlet - va food vacuole - za zonula adhaerens - 1 type I gland cell - 2 type II gland cell - 3 type III gland cell - 4 type IV gland cell - 5 type V gland cell - 6 type VI gland cell - 7 type VII gland cell  相似文献   

10.
Summary All cilia emerge from ciliary pits supported along their circumference by 22–24 dense rodlets that are connected by filaments to a surrounding sheath of endoplasmic reticulum. The proximal part of the basal body is provided with two short lateral rootlets and one long terminal rootlet, all associated with microtubules. The lateral rootlets are in turn connected by fine fibrous material to the dense supporting rodlets which follow the contour of the ciliary pit and extend along the ciliary membrane beyond the level of the basal plate where the central pair of microtubules originates. The proximal part of the basal body has fine fibrous connections to the endoplasmic reticulum while its distal portion is surrounded by nine curved sheets. The terminal cell contactions are by belt desmosomes that are accompanied by a bundle of microfilaments which encircle the apical region of the cell and insert at the cell membrane. Tight junctions are lacking. Endocytosis was demonstrated by the uptake of cationized ferritin. The structures associated with the ciliary pits are probably associated with the firm anchorage of the ciliary base since Trichoplax adheres to the substrate as it moves propelled by its ventral cilia. The marginal bundle of microfilaments may be involved in folding of the organism during feeding.  相似文献   

11.
K. Lundin 《Zoomorphology》1997,117(2):81-92
 The fine morphology of epidermal ciliary structures in four species of the Nemertodermatida and four species of the Acoela was studied, with emphasis on Meara stichopi (Nemertodermatida). The cilium of M. stichopi has a distal shelf and is proximally separated from the basal body by a cup-shaped structure. The bottom of the cup consists of a bilayered dense plate, or basal plate. The basal body consists of peripheral microtubule doublets continuous with those of the cilium. In the upper part of the basal body, the doublets are set at an angle and are anchored to the enclosing cell membrane by Y-shaped structures. The lower part of the basal body tapers eventually. The striated main rootlet arises on the anterior face of the basal body, initially like a flattened strap, and continues along the basal body shaped as a tube which further down becomes solid. The hour-glass-shaped posterior rootlet arises on the posterior face of the basal body. Contrary to the main rootlet, the striations in the proximal part of the posterior rootlet run parallel to the microtubule doublets of the basal body. A pair of microtubule bundles lead from the posterior rootlet to the two main rootlets in the hind ciliary row, and follow these to their lower tip. In the other species of the Nemertodermatida studied, the structure of the ciliary basal body and the ciliary rootlets is similar to that of M. stichopi. Structural differences in the species of the Acoela are that the lowermost end of the basal body is narrow and bent forwards, the proximal part of the main rootlet is trough-shaped, the main rootlet is accompanied by a pair of lateral rootlets and the posterior rootlet with associated microtubule bundles is thin. The epidermal ciliary structures in species of the Nemertodermatida and Acoela have a number of shared characters which are unique within the Plathelminthes. However, almost all of these characters are found in Xenoturbella bocki (Xenoturbellida), and some even in species of other ”phyla” of the ”lower” Metazoa. Hence, these characters cannot be considered apomorphic for the Acoelomorpha. A character seemingly present only in species of the Nemertodermatida and Acoela is the bilayered dense plate. This feature might represent an autapomorphic character state for the Acoelomorpha. Accepted: 7 March 1997  相似文献   

12.
The ciliary rootlet, first recognized over a century ago, is a prominent structure originating from the basal body at the proximal end of a cilium. Despite being the largest cytoskeleton, its structural composition has remained unknown. Here, we report a novel 220-kD protein, designated rootletin, found in the rootlets of ciliated cells. Recombinant rootletin forms detergent-insoluble filaments radiating from the centrioles and resembling rootlets found in vivo. An mAb widely used as a marker for vertebrate rootlets recognizes an epitope in rootletin. Rootletin has a globular head domain and a tail domain consisting of extended coiled-coil structures. Rootletin forms parallel in register homodimers and elongated higher order polymers mediated by the tail domain alone. The head domain may be required for targeting to the basal body and binding to a kinesin light chain. In retinal photoreceptors where rootlets appear particularly robust, rootlets extend from the basal bodies to the synaptic terminals and anchor ER membranes along their length. Our data indicate that rootlets are composed of homopolymeric rootletin protofilaments bundled into variably shaped thick filaments. Thus, rootletin is the long-sought structural component of the ciliary rootlet.  相似文献   

13.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

14.
In Paramecium, the morphogenesis of the cortex at cell division, which assures reconstruction of shape and surface pattern, has been shown to involve transcellular signals which spread across the cortex like a wave, originating principally from the oral apparatus. One of the events these signals control is the reorganization of the ciliary rootlets through a cycle of regression and regrowth. The ciliary rootlets are nucleated on the ciliary basal bodies and form a scaffold extending over the entire cell surface that is important in aligning the basal bodies and the unit territories organized around them in longitudinal rows. We present evidence that the mechanism underlying their reorganization is cell-cycle-dependent phosphorylation of the structural proteins which compose the ciliary rootlets. We have isolated the rootlets and prepared a polyclonal antibody against them. In situ immunofluorescence of dividing cells with the anti rootlet antibody, and with the monoclonal antibody MPM-2 specific for phosphoproteins shows that a wave of phosphorylation of the ciliary rootlets spreads across the cell at division and just precedes their regression. Two-dimensional Western blot analysis of cytoskeleton and isolated rootlets along with alkaline phosphatase treatment demonstrates that the rootlets are composed of phosphoproteins, while experiments with interphase and dividing cells provide direct evidence that hyperphosphorylation of these proteins at division brings about disassembly of the structure.  相似文献   

15.
S Tyler 《Tissue & cell》1979,11(3):385-400
A comparative study of epidermal cilia in the Turbellaria and Nemertea has revealed features in these organelles that are specific to certain taxonomic groups. Turbellarians of the order Acoela, in particular, have a characteristic pattern of axonemal filament termination in the distal tips of their cilia and a characteristic ciliary rootlet system that is not seen in other turbellarian orders nor in other metazoans. Each epidermal cilium in acoels has a typical 9 + 2 axonemal pattern through the main part of its length, but near its distal tip there is an abrupt shelf-life narrowing at which filaments 4-7 terminate; filaments 1, 2, 8 and 9 continue into the thinner distal-most part of the shaft along with singlet microtubules from the axonemal center. The rootlet system in acoel cilia involves an interconnecting pattern with lateral connectives. The unique structure of these cilia has systematic and phylogenetic significance for the Acoela, and it is argued that ultrastructural characters in general, including characters of organelles, can be validly applied to the phylogeny and systematics of the Metazoa.  相似文献   

16.
Adaptations of ciliary systems for the propulsion of water and mucus   总被引:1,自引:0,他引:1  
1. The characteristics of ciliary systems are determined by the dominance of viscous effects over inertial effects. 2. The velocity of water propulsion depends on ciliary length, beat frequency, pattern of beating, the arrangement of the cilia and their co-ordination. Beating cilia influence a layer of water only two or three cilium lengths deep, with maximal velocity near the ciliary tip. 3. Mucus is propelled by the tips of short cilia that penetrate the mucus; these cilia are closely spaced on epithelia, and achieve slow propulsion that is relatively independent of load and does not require strong ciliary co-ordination.  相似文献   

17.
Ultrastructural studies of epidermal locomotory ciliary structures of Xenoturbella bocki , i.e. the basal part of the axaneme, the basal body and the ciliary rootlets, have revealed characters supporting the hypothesis of a close relationship between Xenoturbella and the Acoelomorpha. Some of the most prominent of these possibly synapomorphic characters are a cup-shaped structure at the base of the axoneme, a proximally hollow rootlet arising on the anterior face of the basal body and bundles of microtubules extending from the basal foot to the main rootlets in the next hind row. Other views in the recent literature places Xenoturbella as closely related to the Mollusca or to the stem species of the Bilateria. As such, the phylogenetic affinities of Xenoturbella remain highly debateable. A review of recent reports on the subject is given here, together with a discussion of combinations of current phylogeny hypotheses.  相似文献   

18.
Epidermal cilia of the oncomiracidium of Neoheterocotyle rhinobatidis (Monogenea, Monopisthocotylea, Monocotylidae) have long cross-striated vertical rootlets that are not extensions of the basal bodies as are the vertical rootlets in all catenulid and rhabditophoran turbellarians examined to date. Instead, they originate in the basal part of the horizontal rootlet a short distance from the basal bodies. In Monocotyle spiremae (Monocotylidae), the vertical rootlets are less distinct, with no apparent cross-striation, but they also originate from the basal part of the horizontal rootlets. Epidermal cilia of the oncomiracidium of Zeuxapta seriolae (Monogenea, Polyopisthocotylea, Axinidae) lack vertical rootlets like all other neodermatans examined, but bundles of fibres extend from the basal bodies a short distance into the cytoplasm of the epidermal cells. Monopisthocotylean Monogenea would be intermediate between rhabditophorans and the other neodermatans (in having weakly developed vertical rootles), if these structures were homologous in the two groups. However, in view of the different origin of vertical rootlets in turbellarians and monopisthocolylean oncomiracidia, it is suggested that they are not homologous, and vertical rootlets in the Monopisthocotylea are therefore named “false vertical rootlets”.  相似文献   

19.
The ciliary rootlet is a large striated fibrous network originating from basal bodies in ciliated cells. To explore its postulated role in intracellular transport, we investigated the interaction between kinesin light chains (KLCs) and rootletin, the structural component of ciliary rootlets. We show here that KLCs directly interact with rootletin and are located along ciliary rootlets. Their interactions are mediated by the heptad repeats of KLCs. Further studies found that these interactions tethered kinesin heavy chains along ciliary rootlets. However, the ciliary rootlet-bound kinesin-1 did not recruit microtubules or move along ciliary rootlets. Additionally, amyloid precursor protein (APP; a kinesin-1 vesicular cargo receptor) and presenilin 1 (a presumed cargo of APP/kinesin-1) were found to be enriched along the rootletin fibers, suggesting that the interaction between ciliary rootlets and kinesin-1 recruits APP and presenilin 1 along ciliary rootlets. These findings indicate that ciliary rootlets may provide a scaffold for kinesin-1 vesicular cargos and, thus, play a role in the intracellular transport in ciliated cells.  相似文献   

20.
The flagellar basal apparatus of the brown alga Ectocarpus siliculosus was re‐investigated in details using transmission electron microscopy and electron tomography. As a result, three‐dimensional structures with spatial arrangement of bands and microtubular flagellar rootlets were observed. Fibrous structures linking the anterior flagellar basal body to the major anterior rootlet (R3) or the bypassing rootlet was newly discovered in this study. A direct attachment from the minor anterior rootlet (R4) to the anterior and posterior basal bodies was also discovered, as were attachments from the minor posterior rootlet (R1) to the deltoid striated band and from the major posterior rootlet (R2) to the posterior fibrous band. The microtubular flagellar rootlets were connected to the bands and to the anterior or posterior basal body. These bands may have a role in maintaining the spatial arrangement of the anterior and posterior flagellar basal bodies and the microtubular flagellar rootlets. A numbering system of the basal body triplets was established by tracing axonemal doublets in the serial sections. From these observations, the precise position of two flagellar basal bodies, bands, and flagellar rootlets was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号