首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

We previously reported the role of IL-6 in a murine model of cancer cachexia and currently documented a patient in whom tocilizumab, anti-IL-6 receptor antibody, dramatically improved cachexia induced by IL-6 over-expressing lung cancer. Despite this potential to alleviate cancer cachexia, tocilizumab has not been approved for this clinical use. Therefore, preceding our planned clinical trial of tocilizumab, we designed the two studies described here to evaluate the levels of IL-6 in patients with lung cancer and the effect of tocilizumab in a murine model of human cancer cachexia.

Methods

First, we measured serum IL-6 levels in patients with lung cancer and analyzed its association with cachexia and survival. Next, we examined the effect of a rodent analog of tocilizumab (MR16-1) in the experimental cachexia model.

Results

Serum IL-6 levels were higher in patients with cachexia than those without cachexia. In patients with chemotherapy-resistant lung cancer, a high IL-6 serum level correlated strongly with survival, and the cut-off level for affecting their prognosis was 21 pg/mL. Meanwhile, transplantation of IL-6-expressing Lewis Lung Carcinoma cells caused cachexia in mice, which then received either MR16-1 or 0.9% saline. Tumor growth was similar in both groups; however, the MR16-1 group lost less weight, maintained better food and water intake and had milder cachectic features in blood. MR16-1 also prolonged the survival of LLC-IL6 transplanted mice (36.6 vs. 28.5 days, p = 0.016).

Conclusion

Our clinical and experimental studies revealed that serum IL-6 is a surrogate marker for evaluating cachexia and the prognosis of patients with chemotherapy resistant metastatic lung cancer and that tocilizumab has the potential of improving prognosis and ameliorating the cachexia that so devastates their quality of life. This outcome greatly encourages our clinical trials to evaluate the safety and efficacy of tocilizumab treatment for patients with increased serum IL-6.  相似文献   

3.
V M Lauta 《Cytokine》2001,16(3):79-86
Study of the network of cytokines has helped identify cell growth factors in multiple myeloma. Plasma cells themselves may produce autocrine interleukin 6 (IL-6) while IL-6 production by bone marrow stromal cells may operate a paracrine mechanism. Involvement of IL-6 in multiple myeloma is indicated by its ability to induce the differentiation of myeloma plasmablasts into mature malignant plasma cells. Differential diagnosis between multiple myeloma and monoclonal gammopathies of undetermined significance (MGUS) is generally based on clinical and laboratory parameters. Nevertheless, evaluation of the serum level of IL-6, C reactive protein, soluble IL-6 receptor, soluble IL-2 receptor together with the activity exerted by IL-3 and IL-4 on some cellular subsets constitutes an additional element in the differential diagnosis of border-line cases. Serum levels of IL-6, soluble IL-6 receptor (sIL-6R), soluble interleukin-2 receptor (sIL-2R) and the expression of membrane-bound IL-2 receptors, both on bone marrow plasma cells and on peripheral blood mononuclear cells are correlated with disease activity and disease stage. In addition, IL-6 and sIL-6R serum levels correlate with the duration of survival, as high values at the time of diagnosis correlate with short duration of survival.  相似文献   

4.
Barton BE  Murphy TF 《Cytokine》2001,16(6):251-257
The development of cancer cachexia has been linked to cytokines related to interleukin6 (IL-6). We examined the kinetics of IL-6, IL-11, oncostatinM (OSM) and leukaemia inhibitory factor (LIF) induction in the splenocytes of tumour-bearing mice. Using a lung carcinoma line, which grows in C57BL/6J mice, we observed that when the tumour grew and cachexia was observed, the splenocytes produced IL-6, IL-11, and OSM, but not LIF. Cytokine expression was observed within 1 week (day 3 for IL-6 and IL-11, and day 1 for OSM) of administration of tumour cells, and was observed in splenocytes without tumour metastases to the spleen. Cytokine expression preceded cachexia (determined by changes in serum triglyceride levels and decrease in epididymal fat-pad weights) development by over 1 week. Exogenous administration of IL-11 resulted in the accelerated onset of cachexia, compared to control protein treatment, but without an effect on the tumour burden. In vivo treatment with a neutralizing dose of anti-OSM antibody inhibited the triglyceride dysregulation only until the synthesis of IL-6 and IL-11 began in the spleen (day 3). Afterward, IL-6 and IL-11 induced lipid catabolism in the absence of functional OSM. We conclude from the data described above that cachexia developed due to a systemic cytokine response induced by a tumour burden, and that IL-6-like cytokines contributed independently to lipid hypercatabolism in the aetiology of cancer cachexia.  相似文献   

5.
IL-6 is a multifunctional cytokine involved in differentiation and proliferation of immune cells. Moreover, it has diverse effects on the proliferation of tumor cells in vivo and in vitro. Although stimulating cell growth of multiple myeloma cells, it inhibits the proliferation of B16 melanoma cells and lung cancer cells. B9.55 cells, B-cell lymphoma, are IL-6-dependent cells, definitely requiring exogenous IL-6 for growth. When the cDNA for IL-6 was transfected into B9.55 cells, they began growing in an autocrine pattern without exogenous IL-6. To investigate the effects of IL-6 on B9.55 lymphoma in vivo, IL-6-transfected B9.55 cells (B9.G7) or neotransfected B9.55 cells (B9.vec) were injected subcutaneously into syngeneic mice. Initially, B9.G7 outgrew B9.vec, but after 3 weeks, B9.G7 grew slower than B9.vec. In addition, 5 µg of recombinant human IL-6 was injected daily into the tumor site. Reduced tumor sizes of IL-6-treated rats, similar to those observed in mice which received B9.G7, indicated that IL-6 itself is the mediator of tumor regression. When B9.G7 cells were injected into the irradiated normal mice, tumor regression was released compared with the untreated normal control, suggesting that radiosensitive host components were involved in the regression of B9.G7 cell growth. However, the tumor regression of B9.G7 cells was not released in SCID mice. Histologically, B9.G7 tumor demonstrated severe necrosis and apoptotic cells with infiltration of host inflammatory cells. Above data indicate that IL-6 functions as an autocrine growth factor for B9.G7 cells in vitro, but behaves as an autocrine inhibiting factor in vivo. These contrasting effects of IL-6 on tumor cells in vitro and in vivo will be facilitative in understanding the interaction of cytokines and host immune systems.They have contributed equally to this work.  相似文献   

6.
IFN-alpha induces autocrine production of IL-6 in myeloma cell lines.   总被引:7,自引:0,他引:7  
IL-6 is a major tumor growth factor in human multiple myeloma. Myeloma cell lines, which have the same phenotypic characteristics and Ig gene rearrangements as the original fresh myeloma cells and whose growth is strictly dependent on exogenous IL-6 similar to fresh myeloma cells, have been reproducibly established. We show here that IFN-alpha stimulated the growth of five of six of these human myeloma cell lines by inducing an autocrine production of IL-6 in myeloma cells. Indeed, IFN-alpha induced IL-6 mRNA accumulation and IL-6 production in myeloma cells and the IFN-alpha-induced growth of these cells was inhibited by anti-IL-6 mAb. Moreover, IFN-alpha made possible the rapid emergence of autonomously growing myeloma cell sublines, which produced IL-6 as an autocrine growth factor. As IFN-alpha has a potential therapeutical interest for multiple myeloma, the present study opens up new directions for studying its effects on the myeloma clone in vivo.  相似文献   

7.
Originating from a post-switch memory B cell or plasma cell compartment in peripheral lymphoid tissues, malignant myeloma cells accumulate in the bone marrow of patients with multiple myeloma. In this favorable microenvironment their growth and survival are dependent upon both soluble factors and physical cell-to-cell and cell-to-extracellular matrix contacts. In this report we show that hyaluronan (HA), a major nonprotein glycosaminoglycan component of the extracellular matrix in mammalian bone marrow, is a survival and proliferation factor for human myeloma cells. The effect of HA is mainly mediated through a gp 80-interleukin 6 (IL-6) receptor pathway by a CD44-independent mechanism, suggesting that HA retains and concentrates IL-6 close to its site of secretion, thus favoring its autocrine activity. In addition, we show that HA-mediated survival and proliferation of myeloma cells is associated with a down-regulation in the expression of p27(kip1) cyclin-dependent kinase inhibitor and a hyperphosphorylation of the retinoblastoma protein (pRb). These data suggest that HA could be an important component in the myeloma cell physiopathology in vivo by potentiating autocrine and/or paracrine IL-6 activities.  相似文献   

8.
It is important to understand the mechanisms that regulate macrophage activation to establish novel therapies for inflammatory diseases, such as sepsis; a systemic inflammatory response syndrome generally caused by bacterial lipopolysaccharide (LPS). In this study, we investigated the involvement of extracellular ATP-mediated autocrine signaling in LPS-induced macrophage activation. We show here that ATP release via exocytosis, followed by activation of P2Y11 receptor, is a major pathway of the macrophage activation, leading to release of cytokines. Treatment of human monocyte THP-1 cells with LPS induced rapid ATP release from cells, and this release was blocked by knockdown of SLC17A9 (vesicular nucleotide transporter, VNUT), which is responsible for exocytosis of ATP. ATP-enriched vesicles were found in cytosol of THP-1 cells. These data suggest the involvement of vesicular exocytosis in the release of ATP. Knockdown of SLC17A9, the P2Y11 antagonist NF157 or knockdown of P2Y11 receptor significantly suppressed both M1-type polarization and IL-6 production in THP-1 cells, indicating an important role of activation of P2Y11 receptor by released ATP in macrophage activation. Next, the effect of NF157 on LPS-induced immune activation was examined in vivo. Administration of LPS to mice caused increase of serum IL-1ß, IL-6, IL-12 and TNF-alpha levels at 3–24 h after the administration. Pre-treatment of LPS-treated mice with NF157 suppressed both elevation of proinflammatory cytokines in serum and M1 polarization of peritoneal/spleen macrophages. Moreover, post-treatment with NF157 at 30 min after administration of LPS also suppressed the elevation of serum cytokines levels. We conclude that vesicular exocytosis of ATP and autocrine, positive feedback through P2Y11 receptors is required for the effective activation of macrophages. Consequently, P2Y11 receptor antagonists may be drug candidates for treatment of inflammatory diseases such as sepsis.  相似文献   

9.
3,3′-Diindolylmethane (DIM), a major condensation product of indole-3-carbinol, exhibits chemopreventive properties in animal models of cancer. Recent studies have shown that DIM stimulates interferon-gamma (IFN-γ) production and potentiates the IFN-γ signaling pathway in human breast cancer cells via a mechanism that includes increased expression of the IFN-γ receptor. The goal of this study was to test the hypothesis that DIM modulates the murine immune function. Specifically, the effects of DIM were evaluated in a panel of murine immune function tests that included splenocyte proliferation, reactive oxygen species (ROS) generation, cytokine production and resistance to viral infection. DIM was found to induce proliferation of splenocytes as well as augment mitogen- and interleukin (IL)-2-induced splenocyte proliferation. DIM also stimulated the production of ROS by murine peritoneal macrophage cultures. Oral administration of DIM, but not intraperitoneal injection, induced elevation of serum cytokines in mice, including IL-6, granulocyte colony-stimulating factor (G-CSF), IL-12 and IFN-γ. Finally, in a model of enteric virus infection, oral DIM administration to mice enhanced both clearance of reovirus from the GI tract and the subsequent mucosal IgA response. Thus, DIM is a potent stimulator of immune function. This property might contribute to the cancer inhibitory effects of this indole.  相似文献   

10.
When bone-marrow cells from patients with multiple myeloma (MM) were seeded in short-term cultures, a spontaneous proliferation of the myeloma cells occurred for most of the patients with active disease and proliferating myeloma cells in vivo. In all cases, this spontaneous proliferation was inhibited by anti-IL-6 monoclonal antibodies (mabs). Moreover, myeloma cell lines, completely dependent upon exogenous IL-6 for their growth, could be reproducibly established by initially stimulating the myeloma cells with both IL-6 and GM-CSF. These results demonstrate that IL-6 is a major paracrine myeloma-cell growth factor in vitro. High serum IL-6 levels were observed in MM patients with active disease, especially patients with terminal disease. High IL-6 mRNA levels were found in bone-marrow cells of MM patients, mainly in myeloid and monocytic cells, in vivo. The myeloma cells did not express IL-6 mRNA. Injection of anti-IL-6 mabs to MM patients with terminal disease and extramedullary proliferation, completely blocked the myeloma-cell proliferation in vivo and completely inhibited the serum IL-6 bioactivity and the serum CRP levels. One patient with plasma cell leukemia and hypercalcemia was treated for two months with anti-IL-6 mabs and maintain in remission for 2 months without major side effects. Interestingly, the serum calcium levels also decreased in these patients. All these results show that IL-6 is the main cytokine responsible not only for the myeloma-cell proliferation in vivo, but presumably also for the large bone resorption processes observed in human MM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
A role for interleukin-6 (IL-6) in malignant mesothelioma has been suggested by the clinically presenting symptoms of mesothelioma patients, which include fever, weight loss and thrombocytosis. A murine model of malignant mesothelioma was therefore used to examine the potential role of IL-6 in this cancer type and whether the effect of interferon (IFN) therapy on mesothelioma might be mediated, in part, by regulating IL-6 levels and/or IL-6-induced pathobiology. A panel of human and murine mesothelioma cell lines was assayed for endogenous IL-6 production in a bioassay, and for IL-6-mRNA expression. Four out of 5 human and 5 out of 15 murine mesothelioma cell lines produced moderate to high levels of bioactive IL-6 in vitro. This result was corroborated by mRNA detection. One of the representative murine cell lines, AB22, was chosen for further in vivo studies in the murine mesothelioma model. In AB22-inoculated mice detectable serum IL-6 levels were found to precede macroscopically detectable tumour growth, clinical signs (cachexia, abdominal distension, diarrhoea) and changes in the peripheral lymphoid organs (cell depletion and functional depression). Treatment with anti-IL-6 antibody curtailed the clinical symptoms (P<0.001), as did treatment with recombinant human (rhu) IFN (P<0.001). Neither anti-IL-6 antibody nor rhuIFN had a direct growth-inhibitory effect on the AB22 mesothelioma cell line in vitro, however, in vivo rhuIFN treatment of mice inoculated with AB22 cells attenuated both IL-6 mRNA expression in the tumours and serum IL-6 levels, ameliorated the depression of lymphocyte activities, and enhanced the number of tumour-infiltrating lymphocytes and macrophages. On the basis of these results it is suggested that IL-6 mediates some of these effects, directly or indirectly, and that a combination therapy of rhuIFN and anti-IL-6 antibody may be an improved palliative treatment for patients with malignant mesothelioma.  相似文献   

13.
Barton BE  Murphy TF 《Cytokine》2000,12(10):1537-1545
Myeloma is a neoplasm thought to "home" to bone marrow. However, evidence for bone-marrow-specific receptors or adhesion molecules expressed on myeloma cells is scanty. Initial myeloma expansion is thought to be due to IL-6 and/or related cytokines. Previous determinations of cytokine expression in bone marrow were performed on bone marrow stromal lines; these findings may not reflect the constitutive pattern of expression in situ. Intracytoplasmic staining for IL-6-like cytokines revealed constitutive expression of some factors in the bone marrow of normal mice, but not spleens. Spleens of myeloma-transplanted SCID mice expressed IL-6-like cytokines, indicative of induction of expression by myeloma. Some cytokines expressed in bone marrow induced myeloma proliferation in the presence of dexamethasone, demonstrating dependence of the myeloma on these cytokines. Our data imply that, rather than "homing" to bone marrow, myeloma cells proliferated within marrow cavities more than in other organs because of growth factors constitutively expressed by bone marrow cells. As myeloma progressed, we observed the induction of growth factor expression in spleen cells. Furthermore, because cytokines other than IL-6 may induce myeloma cell proliferation, therapy aimed at neutralizing IL-6 may not be the most effective method to treat this disease. These findings have implications for both the pathophysiology and therapy of multiple myeloma.  相似文献   

14.
Despite recent consensus definitions, lack of specific biomarkers remains a hurdle towards a more accurate and efficient diagnosis of cancer cachexia, distinguishing cachexia as a separate entity from other wasting syndromes. In a previous pilot study, we have shown that cancer-cachectic mice have a unique metabolic fingerprint with distinct glucose and lipid alterations compared to healthy controls. Further metabolomics studies were carried out to investigate differences in metabolic profiles of cancer-cachectic mice to tumor-bearing non-cachectic mice, calorie-restricted mice, and surgically treated cancer-cachectic mice. CD2F1 mice were divided into: (1) Cachexia Group received cachexia-inducing C26 undifferentiated colon carcinoma cells; (2) Tumor-Burden Group received, non-cachectic, P388 lymphoma cells; (3) Caloric-Restriction Group, remaining cancer-free, but subjected to caloric-restriction; (4) Surgery Group, similar to Cachexia Group, but tumors resected mid-experiment; and (5) Control Group aged intact. Baseline, mid-experiment and final serum samples were collected for 1H NMR spectroscopic analysis. After data reduction, unsupervised principal component analysis and orthogonal projections to latent structures analyses demonstrate that the unique metabolic fingerprint is independent of tumor-burden and distinct from profiles of caloric-restriction and aging. Hyperlipidemia, hyperglycemia, and reduced branched-chain amino acids distinguish cachexia from other groups. Furthermore, the profile of surgically treated mice differs from that of cachectic mice, reverting to a profile more congruent with healthy controls indicating cachexia is amenable to correction where surgical cure is possible. That metabolomic analysis of murine serum is able to differentiate cachexia from tumor-burden and caloric-restriction warrants similar translational investigations in patients to explore cancer cachexia’s unique biomarkers.  相似文献   

15.
Hypomorphic ADAM17(ex/ex) mice showed defects in mucosal regeneration due to inefficient enhanced GFR shedding. ADAM17 is the main sheddase of interleukin-6 receptor (IL-6R) to induce IL-6 trans-signaling. However, serum levels of soluble murine IL-6R were not reduced in ADAM17(ex/ex) mice, and murine ADAM17 was not the major sheddase of murine IL-6R. Shedding of murine IL-6R by murine ADAM17 was rescued in chimeric murine IL-6R proteins containing any extracellular domain but not the transmembrane and intracellular domain of human IL-6R. Apoptosis is a physiological stimulus of ADAM17-mediated shedding of human IL-6R. Even though apoptosis induced IL-6R shedding in mice, the responsible protease was identified as ADAM10. ADAM10 also was identified as protease responsible for ionomycin-induced shedding of murine and human IL-6R. However, in ADAM10-deficient murine embryonic fibroblasts, compensatory shedding of human IL-6R was mediated by ADAM17, but loss of ADAM10-mediated shedding of murine IL-6R was compensated by an as-yet-unidentified protease. Finally, we identified physiological purinergic P2X7 receptor stimulation as a novel inducer of murine and human IL-6R shedding solely mediated by ADAM10. In conclusion, we describe an unexpected species specificity of ADAM10 and ADAM17 and identified ADAM10 as novel inducible sheddase of IL-6R in mice and humans, which might have consequences for the interpretation of phenotypes from ADAM17- and ADAM10-deficient mice.  相似文献   

16.
Recent investigations support an important role for TGF-? in the development of colorectal cancer. However, the molecular consequences ofTGF-? signaling in the colon remains incompletely understood. In a recent study in Immunity, we analyzed the role of TGF-? in a murine model of colon cancer. Using transgenic mice overexpressing TGF-? or a dominant negative TGF-? receptor II under control of the CD2 minigene, we show that TGF-? signaling in tumor infiltrating T lymphocytes regulates the growth of dysplastic colon epithelial cells, as determined by histology and a novel system for high resolution chromoendoscopy in vivo. At the molecular level, TGF-? signaling in T cells regulated STAT-3 activation in tumor cells via IL-6. IL-6 signaling required tumor cell derived soluble IL-6R rather than membrane bound IL-6R and suppression of such TGF-?-dependent IL-6 trans-signaling prevented tumor progression in vivo. Similar to these observations in mice, here we show that human colon cancer tissue expressed only low amounts of membrane bound IL-6R. In contrast, expression and activity of the matrix metalloproteinase TACE were increased. In summary, our data provide novel insights into the role of TGF-? signaling in colorectal cancer and suggest novel therapeutic approaches for colorectal cancer based on an inhibition of TGF-?-dependent IL-6 trans-signaling.  相似文献   

17.
Virulizin has demonstrated strong antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. Our previous studies have demonstrated that macrophages, NK cells, and cytokines are important in the antitumor mechanism of Virulizin. Virulizin treatment of tumor bearing mice results in the expansion as well as increased activity of monocytes/macrophages and production of cytokines IL-12 and TNFalpha and activation of NK cells. In this study we show that the inflammatory cytokine IL-17E (IL-25) is induced by Virulizin treatment and is part of its antitumor mechanism. IL-17E is a proinflammatory cytokine, which induces a T(H)2 type immune response, associated with eosinophil expansion and infiltration into mucosal tissues. IL-17E was increased in sera of Virulizin-treated mice bearing human melanoma xenografts, compared to saline-treated controls, as shown by 2D gel electrophoresis and ELISA. Treatment of splenocytes in vitro with Virulizin resulted in increased IL-17E mRNA expression, which peaked between 24 and 32 h post-stimulation. Both in vitro and in vivo experiments demonstrated that B cells produced IL-17E in response to Virulizin treatment. Furthermore, Virulizin treatment in vivo resulted in increased blood eosinophilia and eosinophil infiltration into tumors. Finally, injection of recombinant IL-17E showed antitumor activity towards xenografted tumors, which correlated with increased eosinophilia in blood and tumors. Taken together, these results support another antitumor mechanism mediated by Virulizin, through induction of IL-17E by B cells, leading to recruitment of eosinophils into tumors, which may function in parallel with macrophages and NK cells in mediating tumor destruction.  相似文献   

18.
The biological response to IL-12 is mediated through specific binding to a high affinity receptor complex composed of at least two subunits (designated IL-12Rbeta1 and IL-12Rbeta2) that are expressed on NK cells and activated T cells. The selective loss of IL-12Rbeta2 expression during Th2 T cell differentiation suggests that regulation of this receptor component may govern IL-12 responsiveness. In murine assays, down-regulation of IL-12Rbeta2 expression can be prevented by treatment with IFN-gamma, indicating that receptor expression and hence IL-12 responsiveness may be regulated, at least in part, by the local cytokine milieu. In this study, we report that cellular expression of both IL-12Rbeta1 and beta2 mRNA is increased in the lymph nodes of naive mice following systemic administration of murine rIL-12 (rmIL-12). Changes in IL-12R mRNA were associated with increased IFN-gamma secretion following ex vivo activation of lymph node cells with rmIL-12, indicating the presence of a functional receptor complex. Expression of IL-12R mRNA was not restricted to lymph node T cells, and its autocrine regulation was independent of secondary IFN-gamma secretion. Data from fractionated lymph node cells as well as rmIL-12-treated B cell-deficient mice suggest that IL-12-responsive B cells may represent an alternative cellular source for IFN-gamma production. However, the strength of the biological response to rmIL-12 is not governed solely by receptor expression, as rmIL-12-induced IFN-gamma secretion from cultured lymph node cells is accessory cell dependent and can be partially blocked by inhibition of B7 costimulation.  相似文献   

19.
Tüzün E  Li J  Wanasen N  Soong L  Christadoss P 《Cytokine》2006,35(1-2):100-106
IL-6 and TNF-alpha are proinflammatory cytokines involved in various inflammatory or non-inflammatory disorders characterized by muscle wasting. While infiltrating leukocytes are known to be the major source of these cytokines, it is unclear whether muscle cells also contribute to local inflammation. In this study, we first showed that cultured muscle cells and naive mouse muscle tissue were capable of producing IL-6 and TNF-alpha. We demonstrated an increased expression of IL-6 and TNF-alpha on muscle sections of C57BL/6J mice immunized with acetylcholine receptor (AChR) in the complete Freund's adjuvant (CFA) or with CFA only. In the presence of IL-6 or TNF-alpha, cultured AChR-expressing mouse (G-8) and human (TE671) skeletal muscle cells showed significantly decreased alpha-bungarotoxin-binding sites as measured by cellular ELISA. Moreover, IL-6- or TNF-alpha-treated muscle cells displayed a considerable increase in apoptotic cell ratios. Collectively, this study suggests a direct role for these two cytokines in muscle cell destruction and a possibility of muscle cell damage via an autocrine fashion.  相似文献   

20.
Lactoferrin (Ltf), an iron binding glycoprotein, is a pleiotropic molecule whose serum concentration increases under acute phase conditions. The physiological roles of this protein have been well elucidated, but the source and serum regulation of Ltf gene expression have not been investigated in detail as part of the acute phase reaction (APR). In the current work, the changes in hepatic Ltf-gene-expression during turpentine oil- (TO-) or LPS-induced APR were investigated. Ltf was upregulated at both the mRNA and protein levels in the liver of TO- and LPS-treated wild type (WT) mice. The pattern of induction however was different in both animal models indicating distinctive signalling patterns resulting in an acute phase reaction. Cytokines are the core regulators of APR. Among the major cytokines, IL-6 is an important signalling molecule, which also regulates iron homeostasis in response to an inflammatory situation. In this study, the administration of IL-6 induced Ltf gene expression in the liver of WT mice, in murine hepatocytes and in hepa 1-6 cells. Ltf-gene-expression was upregulated also in the liver of TO- and LPS-treated IL-6 knockout (KO) mice. The increase in serum Ltf after LPS injection was greater than after TO-injection both in WT and IL-6-KO mice. To evaluate the contribution of other acute phase cytokines in the regulation of Ltf-gene-expression in the liver, both in vitro and in vivo studies with IL-1β, TNF-α, or IFN-γ were performed. The results demonstrate that TNF-α and IFN-γ also upregulated Ltf-gene-expression, while IL-1β has no role in the regulation of Ltf-gene-expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号