首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant SNAREs have been demonstrated as the minimal membrane fusion machinery. The participation of additional proteins in the regulation of membrane fusion has been suggested. In this study we provide nanometer-resolution images of native NSF oligomers and SNARE complexes isolated from neurons and the pancreas. Our study reveals the presence of new coiled rod-like structures in association with the SNARE complex only in neuronal tissue. Neuronal SNAREs were found coiled and super-coiled with these structures. The existence of NSF as pentamers in its native state is also demonstrated. The extent of coiling and super-coiling of SNAREs may regulate the potency and efficacy of membrane fusion in cells.  相似文献   

2.
Membrane fusion is a sine qua non process for cell physiology. It is critical for membrane biogenesis, intracellular traffic, and cell secretion. Although investigated for over a century, only in the last 15 years, the molecular machinery and mechanism of membrane fusion has been deciphered. The membrane fusion event elicits essentially three actors on stage: anionic phospholipids - phosphatidylinositols, phosphatidyl serines, specific membrane proteins, and the calcium ions, all participating in a well orchestrated symphony. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. Target membrane proteins, SNAP-25 and syntaxin (t- SNARE) and secretory vesicle-associated membrane protein (v-SNARE) or VAMPwere discovered in the 1990's and suggested to be the minimal fusion machinery. Subsequently, the molecular mechanism of SNARE-induced membrane fusion was discovered. It was demonstrated that when t-SNARE-associated lipid membrane is exposed to v-SNARE-associated vesicles in the presence of Ca(2+), the SNARE proteins interact in a circular array to form conducting channels, thus establishing continuity between the opposing bilayers. Further it was proved that SNAREs bring opposing bilayers close to within a distance of 2-3 Angstroms, allowing Ca(2+) to bridge them. The bridging of bilayers by Ca(2+) then leads to the expulsion of water between the bilayers at the contact site, allowing lipid mixing and membrane fusion. Calcium bridging of opposing bilayers leads to the release of water, both from the water shell of hydrated Ca(2+) ions, as well as the displacement of loosely coordinated water at the phosphate head groups in the lipid membrane. These discoveries provided for the first time, the molecular mechanism of SNARE-induced membrane fusion in cells. Some of the seminal discoveries are briefly discussed in this minireview.  相似文献   

3.
4.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

5.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

6.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

7.
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., of 10 and ∼20 ms, respectively.  相似文献   

8.
SNAREs mediate membrane fusion in intracellular vesicle traffic and neuronal exocytosis. Reconstitution of membrane fusion in vitro proved that SNAREs constitute the minimal fusion machinery. However, the slow fusion rates observed in these systems are incompatible with those required in neurotransmission. Here we present a single vesicle fusion assay that records individual SNARE-mediated fusion events with millisecond time resolution. Docking and fusion of reconstituted synaptobrevin vesicles to target SNARE complex-containing planar membranes are distinguished by total internal reflection fluorescence microscopy as separate events. Docking and fusion are SNAP-25-dependent, require no Ca2+, and are efficient at room temperature. Analysis of the stochastic data with sequential and parallel multi-particle activation models reveals six to nine fast-activating steps. Of all the tested models, the kinetic model consisting of eight parallel reaction rates statistically fits the data best. This might be interpreted by fusion sites consisting of eight SNARE complexes that each activate in a single rate-limiting step in 8 ms.  相似文献   

9.
Neurotransmitter release requires the direct coupling of the calcium sensor with the machinery for membrane fusion. SNARE proteins comprise the minimal fusion machinery, and synaptotagmin I, a synaptic vesicle protein, is the primary candidate for the main neuronal calcium sensor. To test the effect of synaptotagmin I on membrane fusion, we incorporated it into a SNARE-mediated liposome fusion assay. Synaptotagmin I dramatically stimulated membrane fusion by facilitating SNAREpin zippering. This stimulatory effect was topologically restricted to v-SNARE vesicles (containing VAMP 2) and only occurred in trans to t-SNARE vesicles (containing syntaxin 1A and SNAP-25). Interestingly, calcium did not affect the overall fusion reaction. These results indicate that synaptotagmin I can directly accelerate SNARE-mediated membrane fusion and raise the possibility that additional components might be required to ensure tight calcium coupling.  相似文献   

10.
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins have been at the fore-front of research on biological membrane fusion for some time. The subcellular localization of SNAREs and their ability to form the so-called SNARE complex may be integral to determining the specificity of intracellular fusion (the SNARE hypothesis) and/or serving as the minimal fusion machinery. Both the SNARE hypothesis and the idea of the minimal fusion machinery have been challenged by a number of experimental observations in various model systems, suggesting that SNAREs may have other functions. Considering recent advances in the SNARE literature, it appears that SNAREs may actually function as part of a complex fusion "machine." Their role in the machinery could be any one or a combination of roles, including establishing tight membrane contact, formation of a scaffolding on which to build the machine, binding of lipid surfaces, and many others. It is also possible that complexations other than the classic SNARE complex participate in membrane fusion.  相似文献   

11.
According to the soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein (SNAP) receptor hypothesis (SNARE hypothesis), interactions between target SNAREs and vesicle SNAREs (t- and v-SNAREs) are required for membrane fusion in intracellular vesicle transport and exocytosis. The precise role of the SNAREs in tethering, docking, and fusion is still disputed. Biophysical measurements of SNARE interactions in planar supported membranes could potentially resolve some of the key questions regarding the mechanism of SNARE-mediated membrane fusion. As a first step toward this goal, recombinant syntaxin1A/SNAP25 (t-SNARE) was reconstituted into polymer-supported planar lipid bilayers. Reconstituted t-SNAREs in supported bilayers bound soluble green fluorescent protein/vesicle-associated membrane protein (v-SNARE), and the SNARE complexes could be specifically dissociated by NSF/alpha-SNAP in the presence of ATP. The physiological activities of SNARE complex formation were thus well reproduced in this reconstituted planar model membrane system. A large fraction (~75%) of the reconstituted t-SNARE was laterally mobile with a lateral diffusion coefficient of 7.5 x 10(-9) cm(2)/s in a phosphatidylcholine lipid background. Negatively charged lipids reduced the mobile fraction of the t-SNARE and the lipids themselves. Phosphatidylinositol-4,5-bisphosphate was more effective than phosphatidylserine in reducing the lateral mobility of the complexes. A model of how acidic lipid-SNARE interactions might alter lipid fluidity is discussed.  相似文献   

12.
To enable fusion between biological membranes, t‐SNAREs and v‐SNARE present in opposing bilayers, interact and assemble in a circular configuration forming ring‐complexes, which establish continuity between the opposing membranes, in presence of calcium ions. The size of a t‐/v‐SNARE ring complex is dictated by the curvature of the opposing membrane. Hence smaller vesicles form small SNARE‐ring complexes, as opposed to large vesicles. Neuronal communication depends on the fusion of 40–50 nm in diameter membrane‐bound synaptic vesicles containing neurotransmitters at the nerve terminal. At the presynaptic membrane, 12–17 nm in diameter cup‐shaped neuronal porosomes are present where synaptic vesicles transiently dock and fuse. Studies demonstrate the presence of SNAREs at the porosome base. Atomic force microscopy (AFM), electron microscopy (EM), and electron density measurement studies demonstrate that at the porosome base, where synaptic vesicles dock and transiently fuse, proteins, possibly comprised of t‐SNAREs, are found assembled in a ring conformation. To further determine the structure and arrangement of the neuronal t‐/v‐SNARE complex, 50 nm t‐and v‐SNARE proteoliposomes were mixed, allowing t‐SNARE‐vesicles to interact with v‐SNARE vesicles, followed by detergent solubilization and imaging of the resultant t‐/v‐SNARE complexes formed using both AFM and EM. Our results demonstrate formation of 6–7 nm membrane‐directed self‐assembled t‐/v‐SNARE ring complexes, similar to, but twice as large as the ring structures present at the base of neuronal porosomes. The smaller SNARE ring at the porosome base may reflect the 3–4 nm base diameter, where 40–50 nm in diameter v‐SNARE‐associated synaptic vesicle transiently dock and fuse to release neurotransmitters.  相似文献   

13.
Synaptic transmission requires the controlled release of neurotransmitter from synaptic vesicles by membrane fusion with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for synaptic membrane fusion. The mechanism by which SNAREs drive membrane fusion is thought to involve a hemifusion intermediate, a condition in which the outer leaflets of two bilayers are combined and the inner leaflets remain intact; however, hemifusion has been observed only as an end point rather than as an intermediate. Here, we examined the kinetics of membrane fusion of liposomes mediated by recombinant neuronal SNAREs using fluorescence assays that monitor both total lipid mixing and inner leaflet mixing. Our results demonstrate that hemifusion is dominant at the early stage of the fusion reaction. Over time, hemifusion transitioned to complete fusion, showing that hemifusion is a true intermediate. We also show that hemifusion intermediates can be trapped, likely as unproductive outcomes, by modulating the surface concentration of the SNARE proteins.  相似文献   

14.
Selective activation of cognate SNAREpins by Sec1/Munc18 proteins   总被引:11,自引:0,他引:11  
Shen J  Tareste DC  Paumet F  Rothman JE  Melia TJ 《Cell》2007,128(1):183-195
Sec1/Munc18 (SM) proteins are required for every step of intracellular membrane fusion, but their molecular mechanism of action has been unclear. In this work, we demonstrate a fundamental role of the SM protein: to act as a stimulatory subunit of its cognate SNARE fusion machinery. In a reconstituted system, mammalian SNARE pairs assemble between bilayers to drive a basal fusion reaction. Munc18-1/nSec1, a synaptic SM protein required for neurotransmitter release, strongly accelerates this reaction through direct contact with both t- and v-SNAREs. Munc18-1 accelerates fusion only for the cognate SNAREs for exocytosis, therefore enhancing fusion specificity.  相似文献   

15.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

16.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

17.
SNAP-29 is a promiscuous syntaxin-binding SNARE.   总被引:1,自引:0,他引:1  
SNARE proteins are key regulators of membrane fusion and are proposed to dictate the specificity with which particular vesicles fuse with particular target organelles. On intracellular organelles that serve as targets for transport vesicles, organelle-specific syntaxins form heterodimers with either SNAP-23 or its recently described homolog SNAP-29. We have performed a variety of in vitro and in vivo binding assays in an attempt to determine whether SNAP-23 and SNAP-29 differ in their ability to form binary SNARE complexes with different intracellular syntaxins. While SNAP-23 preferentially binds to plasma membrane-localized syntaxins, SNAP-29 binds to both plasma membrane and intracellular syntaxins equally well. Furthermore, binding to SNAP-29 augments the ability of syntaxin to bind to vesicle-associated SNAREs and the presence of vesicle SNAREs dramatically increases SNAP-29 binding to syntaxin. These data suggest that SNAP-23 preferentially regulates plasma membrane-vesicle fusion events while SNAP-29 plays a role in the maintenance of various intracellular protein trafficking pathways.  相似文献   

18.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.  相似文献   

19.
Intracellular membrane fusion: SNAREs only?   总被引:4,自引:0,他引:4  
The past two years have seen vigorous attempts to elucidate the mechanism driving intracellular membrane fusion. Much attention was focused on the role of SNARE complexes. Their crystal structure was solved and fusion was reconstituted using proteoliposomes with purified SNAREs suggesting them to be the minimal machinery for fusion. Work on physiological membranes, however, points in another direction and has spurred a hot debate on the function of SNAREs.  相似文献   

20.
Exocytosis in yeast requires the assembly of the secretory vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (v-SNARE) Sncp and the plasma membrane t-SNAREs Ssop and Sec9p into a SNARE complex. High-level expression of mutant Snc1 or Sso2 proteins that have a COOH-terminal geranylgeranylation signal instead of a transmembrane domain inhibits exocytosis at a stage after vesicle docking. The mutant SNARE proteins are membrane associated, correctly targeted, assemble into SNARE complexes, and do not interfere with the incorporation of wild-type SNARE proteins into complexes. Mutant SNARE complexes recruit GFP-Sec1p to sites of exocytosis and can be disassembled by the Sec18p ATPase. Heterotrimeric SNARE complexes assembled from both wild-type and mutant SNAREs are present in heterogeneous higher-order complexes containing Sec1p that sediment at greater than 20S. Based on a structural analogy between geranylgeranylated SNAREs and the GPI-HA mutant influenza virus fusion protein, we propose that the mutant SNAREs are fusion proteins unable to catalyze fusion of the distal leaflets of the secretory vesicle and plasma membrane. In support of this model, the inverted cone-shaped lipid lysophosphatidylcholine rescues secretion from SNARE mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号