首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Experiments were carried out to investigate the effects of root citric acid on uptake and initial distribution of cadmium (Cd) in tomato plants (Lycopersicon esculentum, cv. Tiny Tim). Cd was measured by γ-spectrometry, using 115Cd spikes. Citric acid was measured by UV-detection, and, after spiking with 14C-citric acid, by β-spectrometry. Cd was applied for 48 h periods, in control experiments, in the presence of citric acid, and after 24 h plant pre-incubation with citric acid. Pre-incubation resulted in two-fold increases in fast-exchangeable amounts of root citric acid, as measured by the presence of citric acid in xylem exudates of decapitated and pressurized roots. Simultaneous application of Cd and citric acid did not change Cd accumulation in total plants and in the roots, nor did any significant change occur with respect to Cd root-to-shoot transport, and Cd concentrations in shoot tissues and xylem fluid. After citric acid pre-incubation, total plant uptake of Cd increased twofold, without any significant change in Cd accumulation in the roots. Cd root-to-shoot transport was increased 5–6 fold, and Cd concentrations in shoot tissues and xylem fluid were increased 6–8 fold. Speciation calculations indicated that, under the conditions applied, xylem Cd may be, at least partly, complexed in citric acid. A C Borstlap Section editor  相似文献   

2.
Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L3-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO4·3H2O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)2·H2O}2·H3O+·ClO4 ? corresponds to Cd(S–GS)3O (dominating) and Cd(S–GS)4 four-coordination within oligomeric complexes with mean bond distances of 2.51 ± 0.02 Å for Cd–S and 2.24 ± 0.04 Å for Cd–O. For cadmium(II) solutions (C Cd(II) ~ 0.05 M) at pH 7.5 with moderate excess of GSH (C GSH/C Cd(II) = 3.0–5.0), a mix of Cd(S–GS)3O (dominating) and Cd(S–GS)4 species is consistent with the broad 113Cd NMR resonances in the range 632–658 ppm. In alkaline solutions (pH 11.0 and C GSH/C Cd(II) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS2N2(N/O)2 and CdSN3O2 coordination in fast exchange, whereas the second corresponds to Cd(S–GS)4 sites. At high ligand excess the tetrathiolate complex, Cd(S–GS)4, characterized by a sharp δ(113Cd) NMR signal at 677 ppm, predominates. The average Cd–S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49–2.53 Å, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry.  相似文献   

3.
Layered niobium phosphates have been considered very promising energy storage materials because of their high theoretical operating voltage window and the rich oxidation states of niobium. However, their development has been stymied by the phase‐controlled synthesis due to the insolubility of niobium sources except in concentrated hydrofluoric (HF) acid systems. Herein, a new avenue is opened for layered acid niobium phosphate (2NbOPO4·H3PO4·H2O) synthesis in a mild oxalic acid system. Taking advantage of this strategy, in situ growth of sub‐5 nm 2NbOPO4·H3PO4·H2O nanosheet (NPene) arrays on conductive carbon fiber cloth (CFC) substrates is achieved as self‐standing electrodes for solid‐state supercapacitors. Interestingly, the NPene@CFC electrode exhibits a typical cation (H+ or Li+)‐intercalation kinetics with a wide potential window of 0–1.0 V in aqueous electrolytes. Given the wide potential window and highly exposed active surface, the solid‐state asymmetric supercapacitors constructed from such a NPenes@CFC electrode display a high working potential of 2.0 V, energy density of 122.2 W h kg?1 at a power density of 589.7 W kg?1, cycle stability with a capacitance retention of 94.2% after 10 000 cycles, and also outstanding flexible and wearable characteristics.  相似文献   

4.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

5.
Batch cultures of algae grown at low (0.1 %) and elevated (2.0 %) concentrations of CO2, as well as in original BBM (Bold Basal Medium) and BBM modified with phosphate, EDTA and a combination of both, were exposed to cadmium (Cd(NO3)2·4H2O, 3CdSO4·8H2O and CdCl2·H2O) for 24 h. Regardless of the salt applied, the concentration-dependent relationships of Cd toxicity were found to be biphasic, suggesting the different affinity of target sites to cadmium. Nominal values of EC50 obtained for algae grown in original BBM and at low CO2 were 18.0, 16.44 and 15.37 mg·dm−3 for cadmium nitrate, sulphate and chloride, respectively. However, it was estimated that 97 % of the free cadmium in the added salts were bound by components of original BBM such as EDTA, phosphates, chloride and sulphate. The effect of Cd-salts at concentrations corresponding to EC50 values on algae were tested in media with 10-fold reduced phosphates (BBM-P), BBM depleted of EDTA (BBM-EDTA) and of both phosphates and EDTA (BBM-P-EDTA). For algae grown at low CO2 and BBM-P, cadmium was about 25 % less toxic than those applied in original BBM. Cadmium greatly inhibited (about 85 % of the control) the growth of algae cultured in BBM-EDTA; this effect was only slightly dependent on the CO2 concentration. Deficits of both EDTA and P led to effects similar to those brought about by the absence of EDTA only. The toxicity of cadmium depends on CO2 concentration only when algae are grown in original BBM. The growth of algae under high CO2 conditions was reduced considerably less (about 80% of control) compared with low CO2 concentrations (about 50 % of control). A relationship was found between the toxicity of cadmium salts and final pH values only in variants of low-CO2 grown algae; with an increase of medium pH the toxicity decreased. The results suggest that both growth conditions and the binding ability of the medium markedly affect the toxicity of cadmium towards microalgae.  相似文献   

6.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

7.
Cadmium is a toxic metal that produces disturbances in plant antioxidant defences giving rise to oxidative stress. The effect of this metal on H2O2 and O2·? production was studied in leaves from pea plants growth for 2 weeks with 50 µm Cd, by histochemistry with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT), respectively. The subcellular localization of these reactive oxygen species (ROS) was studied by cytochemistry with CeCl3 and Mn/DAB staining for H2O2 and O2·?, respectively, followed by electron microscopy observation. In leaves from pea plants grown with 50 µm CdCl2 a rise of six times in the H2O2 content took place in comparison with control plants, and the accumulation of H2O2 was observed mainly in the plasma membrane of transfer, mesophyll and epidermal cells, as well as in the tonoplast of bundle sheath cells. In mesophyll cells a small accumulation of H2O2 was observed in mitochondria and peroxisomes. Experiments with inhibitors suggested that the main source of H2O2 could be a NADPH oxidase. The subcellular localization of O2·? production was demonstrated in the tonoplast of bundle sheath cells, and plasma membrane from mesophyll cells. The Cd‐induced production of the ROS, H2O2 and O2·?, could be attributed to the phytotoxic effect of Cd, but lower levels of ROS could function as signal molecules in the induction of defence genes against Cd toxicity. Treatment of leaves from Cd‐grown plants with different effectors and inhibitors showed that ROS production was regulated by different processes involving protein phosphatases, Ca2+ channels, and cGMP.  相似文献   

8.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

9.
Interaction between D-glucuronic acid and alkaline earth metal ions leads to the formation of the complexes such as M(D-glucuronate)X· nH2O and M(D-glucuronate)2 · nH2O, where M = Mg(II), Sr(II), and Ba(II), X = Cl? or Br?, and n = 2–4. Owing to the distinct spectral similarities with the structurally known Ca(D-gluguronate)Br · 3H2O compound, the metal cations bind to three sugar moieties (through O6, O5 of the first, O6', O4 of the second, and O1, O2 of the third residue) and to two H2O molecules, forming an eight-coordination geometry around each metal ion, in M(D-glucuronate)X · nH2O (except for Mg(II) ion, which is six-coordination). The metal ions in M(D-glucuronate)2-nH2O show six-coordination in different structural environments. The strong hydrogen bonding network of the free acid is weakened upon metalation and the sugar moiety crystallizes as α-anomer, in these series of metal-sugar complexes.  相似文献   

10.
Interaction between D-glucuronic acid and Zn(II), Cd(II), and Hg(II) metal ion salts has been studied in solution and solid complexes of the type M(D-glucuronate)X · nH2O and M(D-glucuronate)2·nH2O, where M = Zn(II), Cd(II), and Hg(II), X = Cl or Br, and n = 0–2 were isolated and characterized. Spectroscopic and other evidence indicated that in the metal-halide-sugar complexes the Zn(II) and Cd(II) ions bind to two D-glucuronate moieties via 06, 05 of the carboxyl oxygen atoms of the first and 04, 06' of hydroxyl and carbonyl groups of the second as well as to two H2O molecules, whereas in the corresponding M(D-glucuronate)2 · nH2O salts, the metal ions are bonded to two sugar anions through 06 and 06' of the ionized carboxyl groups and two water molecules, resulting in a six-coordination around each metal cation. The Hg(II) ion binds to 06 and 05 oxygen atoms of a sugar anion and to a halide anion or water molecule, in the Hg(D-glucuronate)X·nH2O compounds, while in the corresponding metal-glucuronate salt mercury is bonded to 06 and 06' of the two glucuronate anions with four-coordination around the Hg(II) ion. The β-anomer sugar conformation is predominant in the free acid and in these series of metal-sugar complexes.  相似文献   

11.
Interaction between l-arabinose and the zinc group metal-ion salts has been studied in aqueous solution and solid complexes of the type M(l-arabinose)X2·nH2O, where M = Zn(II), Cd(II), and Hg(II) ions, X = Cl or Br, and n = 0–2 have been isolated and characterized. On comparison with the structurally known Ca(l-arabinose) Cl2·4H2O and the corresponding magnesium compounds, it is concluded that the Zn(II) and Cd(II) ions are six-coordinated, binding to two arabinose moieties via 03, 04 of the first and 01, 05 of the second sugar molecule as well as to two H2O molecules. The Hg(II) ion binds only to two sugar molecules in a similar fashion to zinc and cadmium ions, resulting in a four coordination around the mercury ion. The strong intermolecular hydrogen bonding network of the free arabinose is rearranged to that of the sugar OH...H2O...halide system upon metalation. The β-anomer sugar conformation is predominant in the free sugar, while the α-anomer conformation is preferred by the alkaline earth and Zn(II), Cd(II), and Hg(II) cations.  相似文献   

12.
Effects of cadmium on the sorption of citric acid In isolatedxylem cell walls were Investigated. 2.5 nM to 9.5 mM [1.5–14]crticacid solutions were perfused through columns of xylem cell wallmaterial, isolated from tomato plants (Lycoperslcon esculentumMill, cv. Tiny Tim). The anion exchange potential of the column was estimated byamino acid analysis as approximately 46 meq dm whereas the apparentanion exchange capacity (AEC) was estimated as 1.65±0.1810–4(citric acId units). This low AEC was attributed toa ‘zipper’ effect, a mutual screening of fixed Rand A+ charges. Pre-loading with 115Cd2+ did not affect citric acid sorption,indicating the absence of Cd-effects on the availability offixed A+ charges, and the absence of the formation of effectiveR-Cd2+ and Donnan tree space (DFS) (Cd(cit)H2]+ complexes. Simultaneous application of both citric acid and 115Cd2+,45Ca2+or 28Mg2+ resufted in increased sorption of citric acid, probablydue to capacity improvement rather than changes in valence-dependentanion sorption; this may be due to the presence of bulk (M(cit)H2]+,held in the column as [M(cit)H2]+ after protonation in the DFS.Sorption of citric acid was greatest in the presence of Ca2+which was discussed in the light of the differences betweenCa, Cd and Mg in their characteristics as co-ordinative M-complexes of citric acid. The overall results indicate the potentialimportance of the presence of metal ions for the xylem transportbehaviour of organic acids in plants. Key words: Cadmium, citric acid, ion exchange, ligand exchange, tomato, xylem cell walls  相似文献   

13.
The effects of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO), and diamine oxidase (DAO) activities, the rate of superoxide radical (O 2 ·? ) generation and polyamine (PA), malondialdehyde (MDA), and H2O2 contents in Hydrocharis dubia (Bl.) Backer leaves under cadmium (Cd) toxicity were studied after 6-day treatment. Cd stress increased putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels. In addition, the activities of ADC, DAO, and PAO were increased, while that of ODC was decreased. Exogenous application of Spd markedly reversed these Cd-induced effects. It also significantly reduced the generation of O 2 ·? and H2O2 and prevented lipid peroxidation. These results suggest that exogenous Spd can enhance the tolerance of H. dubia to Cd. The maintenance of PA homeostasis was necessary for plant metal tolerance.  相似文献   

14.
The efficacy of various chemicals as alternatives to antibiotics for the control of fireblight (Erwinia amylovora) on pear trees was tested. The chemicals were applied in two ways. In 1999 and 2000, preselected pear twigs (80–90% bloom stage) were sprayed once either preventively 1 day before inoculation or curatively one or three days after artificial inoculation with pathogen concentrations of 105 and 107cfu ml?1. In 2000 and 2001, whole trees were sprayed 2 and 4 days before artificial inoculation of the flowers. From the incidence of diseased flowers it appeared that Bion (50% benzothiadiazole) at 0.2 g litre?1 H2O and Aliette (80% fosetyl‐Al) at 2.5 g litre?1 H2O showed considerable preventive action by eliciting systemic acquired resistance mostly when they were applied in the whole trees. However the best control was achieved with the antibiotic Agrept (20% streptomycin) at 0.5 g litre?1 H2O. This showed both preventive and curative action. Kocide (77% copper hydroxide) at 0.9 g litre?1 H2O, Dentamet (citric acid in chelate) at 1.5 ml litre?1 H2O, Bactosan (an extract from the plant Pongamia pinnatd) at 3.0 g litre?1 H2O and Bion at 0.1 g litre?1 H2O, showed preventive action, but only when the inoculum concentration was low.  相似文献   

15.
LiFe1?yMnyPO4/C nanofiber composites are applied as cathode materials in Li‐ion batteries and their electrochemical properties are explored. Nanofiber meshes are synthesized via electrospinning of commercially available precursors (LiOH·H2O, FeSO4·7H2O, MnSO4·H2O, H3PO4, and polyvinylpyrrolidone). Nanofibers calcined at 850 °C under Ar/H2 (95/5 vol%) atmosphere are directly used as self‐supporting electrodes in Swagelok half cells without the need for any conductive additive or polymer binder. The morphology, phase, and chemical composition of as‐prepared and heat‐treated samples are analyzed by means of X‐ray powder diffraction, thermogravimetric analysis, and electron and scanning microscopy techniques. Brunauer–Emmett–Teller gas adsorption–desorption measurements show a high specific surface area (111m2 g?1) for LiFe0.5Mn0.5PO4. The influence of different Fe/Mn ratios on the morphology, electrical, and electrochemical performances are analyzed.  相似文献   

16.
Tissue culture data is non-linear in nature. Decision tree algorithms stand out in revealing the non-linear interactions and relationships between the predictors and responses. Classification and regression tree (CART), chi squared automatic interaction detector (CHAID) and exhaustive CHAID are the common decision tree algorithms. These three models were employed to predict and optimize the effect of minor mineral nutrients on shoot cultures of Corylus avellana L. cultivars. H3BO3, CuSO4·5H2O, MnSO4·H2O, Na2MoO4·2H2O and Zn(NO3)2·6H2O were tested in a range of 0.5?×?to 4?×?Driver and Kuniyuki (DKW) medium within a RSM optimal design. NiSO4·6H2O was also an input within the design with varying levels of 0 to 6 µM. Shoot quality and length were affected by genotype, B and Mo amounts. Multiplication rate depended on genotype, B, Zn and Cu levels. Callus formation was affected by genotype and B. Leaf size depended on genotype, Zn and Mn concentrations. Cu was a significant predictor of leaf color and Ni slightly improved SPAD readings (chlorophyll content). CART in general outperformed CHAID and exhaustive CHAID in terms of the predictive performance. Both CHAID and exhaustive CHAID failed to generate a tree model for a leaf size response. The optimal minor nutrients for hazelnuts based on the predictions of the CART algorithm were suggested to be: B 2.3?×?DKW, Cu 0.5×, Mn 0.5×, 2?×?Mo and Zn 2×.  相似文献   

17.
Aims: Aim of the study was to develop a medium for optimal heparinase production with a strain of Aspergillus flavus (MTCC‐8654) by using a multidimensional statistical approach. Methods and Results: Statistical optimization of intracellular heparinase production by A. flavus, a new isolate, was investigated. Plackett–Burman design was used to evaluate the affect of medium constituents on heparinase yield. The experimental results showed that the production of heparinase was dependent upon heparin, the inducer; chitin, structurally similar to heparin and NH4NO3, the nitrogen source. A central composite design was applied to derive a statistical model for optimizing the composition of the fermentation medium for the production of heparinase enzyme. The optimum fermentation medium consisted of (g l?1) Mannitol, 8·0; NH4NO3, 2·5; K2HPO4, 2·5; Na2HPO4, 2·5; MgSO4.7H2O, 0·5; Chitin, 17·1; Heparin, 0·6; trace salt solution (NaMoO4.2H2O, CoCl2.6H2O, CuSO4.5H2O, FeSO4.7H2O, CaCl2), 10?4 mol l?1. Conclusions: A 2·37‐fold increase in heparinase production was achieved in economic and effective manner by the application of statistical designs in medium optimization. Significance and Impact of the Study: Heparinase production was doubled by statistical optimization in a cost‐effective manner. This heparinase can find application in pharmaceutical industry and for the generation of low‐molecular‐weight heparins, active as antithrombotic and antitumour agents.  相似文献   

18.
Zhang F  Zhang H  Xia Y  Wang G  Xu L  Shen Z 《Plant cell reports》2011,30(8):1475-1483
We examined ameliorative effects of salicylic acid (SA) on two cadmium (Cd)-stressed legume crops with different Cd tolerances, viz. Phaseolus aureus (Cd sensitive) and Vicia sativa (Cd tolerant). Cd at 50 μM significantly increased the production of hydrogen peroxide (H2O2) and superoxide anion (O2·−) in root apoplasts of P. aureus and V. sativa. When comparing the two species, we determined that Cd-induced production of H2O2 and O2·− was more pronounced in P. aureus root apoplasts than in V. sativa root apoplasts. V. sativa had higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than P. aureus in root symplasts and apoplasts. Seed-soaking pretreatment with 100 μM SA decreased Cd-induced production of H2O2 and O2·− in apoplasts of both species, and increased activities of symplastic and apoplastic SOD, symplastic APX, and apoplastic CAT under Cd stress. Hence, SA-induced Cd tolerances in P. aureus and V. sativa are likely associated with increases in symplastic and apoplastic antioxidant enzyme activities.  相似文献   

19.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   

20.
Heavy metals greatly alter plant morphology and architecture, however detailed mechanisms of such changes are not fully explored. Two experiments were conducted to investigate the influence of cadmium (CdCl2·2.5H2O) on some germination, morphological, biochemical and histological characteristics of developing embryonic tissue of maize. In the first experiment, maize seeds were germinated in increasing levels of CdCl2 (200–2000 μm ) in sand and measurements were taken of changes in germination and seedling development attributes. Based on these parameters, 1000 μM CdCl2 was chosen for detailed biochemical and histological measurements. In the second experiment, seeds were germinated in Petri dishes and supplied with 0 (control) or 1000 μM CdCl2 (Cd‐treated). Radicle, plumule, coleoptile and coleorhiza were measured for biochemical and histological changes. The highest amount of Cd was in the coleorhiza and radicle. Free proline, soluble sugars, anthocyanin, soluble phenolics, ascorbic acid, H2O2 and MDA were significantly higher in coleorhizae, followed by the coleoptile, radicle and plumule. Although the radicle and coleorhiza were relatively poor targets of Cd than the other tissues, Cd stress reduced cortical cell size and vascular tissues, and deformed xylem and phloem parenchyma in all plant parts. In conclusion, the main reason for reduced germination was the influence of Cd on architecture of the coleorhiza and coleoptile, which was the result of oxidative stress and other physiological changes taking place in these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号