首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: Lytic transglycosylases are bacterial muramidases that catalyse the cleavage of the beta- 1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan with concomitant formation of a 1,6-anhydrobond in the MurNAc residue. These muramidases play an important role in the metabolism of the bacterial cell wall and might therefore be potential targets for the rational design of antibacterial drugs. One of the lytic transglycosylases is Slt35, a naturally occurring soluble fragment of the outer membrane bound lytic transglycosylase B (MltB) from Escherichia coli. RESULTS: The crystal structure of Slt35 has been determined at 1.7 A resolution. The structure reveals an ellipsoid molecule with three domains called the alpha, beta and core domains. The core domain is sandwiched between the alpha and beta domains. Its fold resembles that of lysozyme, but it contains a single metal ion binding site in a helix-loop-helix module that is surprisingly similar to the eukaryotic EF-hand calcium-binding fold. Interestingly, the Slt35 EF-hand loop consists of 15 residues instead of the usual 12 residues. The only other prokaryotic proteins with an EF-hand motif identified so far are the D-galactose-binding proteins. Residues from the alpha and core domains form a deep groove where the substrate fragment GlcNAc can be bound. CONCLUSIONS: The three-domain structure of Slt35 is completely different from the Slt70 structure, the only other lytic transglycosylase of known structure. Nevertheless, the core domain of Slt35 closely resembles the fold of the catalytic domain of Slt70, despite the absence of any obvious sequence similarity. Residue Glu162 of Slt35 is in an equivalent position to Glu478, the catalytic acid/base of Slt70. GlcNAc binds close to Glu162 in the deep groove. Moreover, mutation of Glu162 into a glutamine residue yielded a completely inactive enzyme. These observations indicate the location of the active site and strongly support a catalytic role for Glu162.  相似文献   

2.
Reid CW  Brewer D  Clarke AJ 《Biochemistry》2004,43(35):11275-11282
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer, peptidoglycan, between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. With 72% amino acid sequence identity between the enzymes, the theoretical structure of the membrane-bound lytic transglycosylase B (MltB) from Psuedomonas aeruginosa was modeled on the known crystal structure of Escherichia coli Slt35, the soluble derivative of its MltB. Of the twelve residues in Slt35 known to make contacts with peptidoglycan derivatives in Slt35, nine exist in the same position in the P. aeruginosa homologue, with two others only slightly displaced. To probe the binding properties of an engineered soluble form of the P. aeruginosa MltB, a SUPREX method involving hydrogen/deuterium exchange coupled with MALDI mass spectrometry detection was developed. Dissociation constants were calculated for a series of peptidoglycan components and compared to those obtained by difference UV absorption spectroscopy. These data indicated that GlcNAc alone does not bind to MltB with any measurable affinity but it does contribute to the binding of GlcNAc-MurNAc-dipeptide. With the MurNAc series of ligands, significant binding contributions are made through both the N-acetyl and C-3 lactyl moieties of the aminosugar with additional contributions to binding provided by associated peptides.  相似文献   

3.
Reid CW  Blackburn NT  Clarke AJ 《Biochemistry》2006,45(7):2129-2138
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer peptidoglycan between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. On the basis of both sequence alignments with and structural considerations of soluble lytic transglycosylase Slt35 from Escherichia coli, four residues were predicted to be involved in substrate binding at the -1 subsite in the soluble derivative of Pseudomonas aeruginosa membrane-bound lytic transglycosylase MltB. These residues were targeted for site-specific replacement, and the effect on substrate binding and catalysis was determined. The residues Arg187 and Arg188, believed to be involved in binding the stem peptide on MurNAc, were shown to play an important role in substrate binding, as evidenced by peptidoglycan affinity assays and SUPREX analysis using MurNAc-dipeptide as ligand. The Michaelis-Menten parameters were determined for the respective mutants using insoluble peptidoglycan as substrate. In addition to affecting the steady-state binding of ligand to enzyme, as indicated by increases in K(M) values, significant decreases in k(cat) values suggested that replacement of either Arg187 and Arg188 with alanine perturbed the stabilization of both the transition state(s) and reaction intermediate. Thus, it appears that Arg187 and Arg188 are vital for proper orientation of the substrate in the active site, and furthermore this supports the proposed role of the stem peptide at binding subsite -2 in catalysis. Replacement of Gln100, a residue that would appear to interact with the N-acetyl group on MurNAc, did not show any changes in substrate affinity or activity.  相似文献   

4.
Leung AK  Duewel HS  Honek JF  Berghuis AM 《Biochemistry》2001,40(19):5665-5673
The three-dimensional structure of the lytic transglycosylase from bacteriophage lambda, also known as bacteriophage lambda lysozyme, complexed to the hexasaccharide inhibitor, hexa-N-acetylchitohexaose, has been determined by X-ray crystallography at 2.6 A resolution. The unit cell contains two molecules of the lytic transglycosylase with two hexasaccharides bound. Each enzyme molecule is found to interact with four N-acetylglucosamine units from one hexasaccharide (subsites A-D) and two N-acetylglucosamine units from the second hexasaccharide (subsites E and F), resulting in all six subsites of the active site of this enzyme being filled. This crystallographic structure, therefore, represents the first example of a lysozyme in which all subsites are occupied, and detailed protein-oligosaccharide interactions are now available for this bacteriophage lytic transglycosylase. Examination of the active site furthermore reveals that of the two residues that have been implicated in the reaction mechanism of most other c-type lysozymes (Glu35 and Asp52 in hen egg white lysozyme), only a homologous Glu residue is present. The lambda lytic transglycosylase is therefore functionally closely related to the Escherichia coli Slt70 and Slt35 lytic transglycosylases and goose egg white lysozyme which also lack the catalytic aspartic acid.  相似文献   

5.
Reid CW  Legaree BA  Clarke AJ 《FEBS letters》2007,581(25):4988-4992
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer peptidoglycan between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. Based on sequence alignments, Ser216 in Pseudomonas aeruginosa membrane-bound lytic transglycosylase B (MltB) was targeted for replacement with alanine to delineate its role in the enzyme's mechanism of action. The specific activity of the Ser216-->Ala MltB derivative was less than 12% of that for the wild-type enzyme, while its substrate binding affinity remained virtually unaltered. These data are in agreement with a role of Ser216 in orienting the N-acetyl group on MurNAc at the -1 subsite of MltB for its participation in a substrate-assisted mechanism of action.  相似文献   

6.
Lytic transglycosylases are enzymes that act on the peptidoglycan of bacterial cell walls. They cleave the glycosidic linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anhydromuramoyl product. The x-ray structure of the lytic transglycosylase gp144 from the Pseudomonas bacteriophage phi KZ has been determined to 2.5-A resolution. This protein is probably employed by the bacteriophage in the late stage of the virus reproduction cycle to destroy the bacterial cell wall to release the phage progeny. phi KZ gp144 is a 260-residue alpha-helical protein composed of a 70-residue N-terminal cell wall-binding domain and a C-terminal catalytic domain. The fold of the N-terminal domain is similar to the peptidoglycan-binding domain from Streptomyces albus G D-Ala-D-Ala carboxypeptidase and to the N-terminal prodomain of human metalloproteinases that act on extracellular matrices. The C-terminal catalytic domain of gp144 has a structural similarity to the catalytic domain of the transglycosylase Slt70 from Escherichia coli and to lysozymes. The gp144 catalytic domain has an elongated groove that can bind at least five sugar residues at sites A-E. As in other lysozymes, the peptidoglycan cleavage (catalyzed by Glu 115 in gp144) occurs between sugar-binding subsites D and E. The x-ray structure of the phi KZ transglycosylase complexed with the chitotetraose (N-acetylglucosamine)(4) has been determined to 2.6-A resolution. The N-acetylglucosamine residues of the chitotetraose bind in sites A-D.  相似文献   

7.
The lytic transglycosylases cleave the bacterial cell wall heteropolymer peptidoglycan with the same specificity as the muramidases (lysozymes), between the N-acetylmuramic acid and N-acetylglucosamine residues, with the concomitant formation of a 1,6-anhydromuramoyl residue. The putative catalytic residue in the family 3 lytic transglycosylase from Pseudomonas aeruginosa, Glu162 as identified by sequence alignment to the homologous enzyme from Escherichia coli, was replaced with both Ala and Asp by site-directed mutagenesis. Neither mutant enzyme differed structurally from the wild-type enzyme, as judged by CD spectroscopy, but both were enzymatically inactive confirming the essential role of Glu162 in the mechanism of action of this lytic transglycosylase. The beta-hexosaminidase inhibitor NAG-thiazoline was shown to inhibit the activity of lytic transglycosylase activity, thus providing the first direct evidence that the formation of the 1,6-anhydromuramoyl residue may proceed through an oxazolinium ion intermediate involving anchimeric assistance. Using surface plasmon resonance and difference absorbance spectroscopy, Kd values of 1.8 and 1.4 mM, respectively, were determined for NAG thiazoline, while its parent compound N-acetylglucosamine neither inhibited nor appeared to bind the lytic transglycosylase with any significant affinity.  相似文献   

8.
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram‐negative pathogen Salmonella typhimurium and the Gram‐positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.  相似文献   

9.
Abstract Two lytic transglycosylases, releasing 1,6-anhydromuropeptides from murein sacculi are present in a mutant deleted for the soluble lytic transglycosylase 70 (Slt70). Thus, there are three different lytic transglycosylases in Escherichia coli . One of the remaining enzymes is soluble and one is a membrane protein that can be solubilized by 2% Triton X-100 in 0.5 M NaCl. Both enzymes are exo-muramidases. Only the membrane enzyme, but not the soluble ones, hydrolyses isolated murein glycan strands (poly-GlcNAc-MurNAc). While the soluble enzymes are inhibited by the muropeptide TetraTriLysArg(dianhydro), the membrane enzyme is not. The antibiotic bulgecin that inhibits Slt70 does not inhibit the lytic transglycosylases present in the slt70 deletion mutant.  相似文献   

10.
The Escherichia coli lytic transglycosylase Slt35 contains a single metal ion-binding site that resembles EF-hand calcium-binding sites. The Slt35 EF-hand is only the second observation of such a domain in a prokaryotic protein. Two crystal structures at 2.1 A resolution show that both Ca2+ ions and Na+ ions can bind to the EF-hand domain, but in subtly different configurations. Heat-induced unfolding studies demonstrate that Ca2+ ions are preferentially bound, and that only Ca2+ ions significantly increase the melting temperature of Slt35. This shows that the EF-hand calcium-binding domain is important for the stability of Slt35.  相似文献   

11.
In addition to the soluble lytic transglycosylase, a murein-metabolizing enzyme with a molecular mass of 70 kDa (Slt70), Escherichia coli possesses a second lytic transglycosylase, which has been described as a membrane-bound lytic transglycosylase (Mlt; 35 kDa; EC 3.2.1.-). The mlt gene, which supposedly encodes Mlt, was cloned, and the complete nucleotide sequence was determined. The open reading frame, identified on a 1.7-kb SalI-PstI fragment, codes for a protein of 323 amino acids (M(r) = 37,410). Two transmembrane helices and one membrane-associated helix were predicted in the N-terminal half of the protein. Lysine and arginine residues represent up to 15% of the amino acids, resulting in a calculated isoelectric point of 10.0. The deduced primary structure did not show significant sequence similarity to Slt70 from E. coli. High-level expression of the presumed mlt gene was not paralleled by an increase in murein hydrolase activity. To clarify the identity of the second transglycosylase, we purified an enzyme with the specificity of a transglycosylase from an E. coli slt deletion strain. The completely soluble transglycosylase, with a molecular mass of approximately 35 kDa, was designated Slt35. Its determined 26 N-terminal amino acids showed similarity to a segment in the middle of the Slt70 primary structure. Polyclonal anti-Mlt antibodies, which had been used for the isolation of the mlt gene, were found to cross-react with Mlt as well as with Slt35, suggesting that the previously described Mlt preparation was contaminated with Slt35. We conclude that the second transglycosylase of E. coli is not a membrane-bound protein but rather is a soluble protein.  相似文献   

12.
Peptidoglycan (PG) is a cell wall heteropolymer that is essential for cell integrity. PG hydrolases participate in correct assembly of the PG layer and have been shown to be required for cell division, cell daughter separation, and maintenance of bacterial morphology. In silico analysis of the Helicobacter pylori genome resulted in identification of three potential hydrolases, Slt, MltD, and AmiA. This study was aimed at determining the roles of the putative lytic transglycosylases, Slt and MltD, in H. pylori morphology, growth, and PG metabolism. Strain 26695 single mutants were constructed using a nonpolar kanamycin cassette. The slt and mltD mutants formed normal bacillary and coccoid bacteria in the exponential and stationary phases, respectively. The slt and mltD mutants had growth rates comparable to the growth rate of the parental strain. However, the mltD mutant exhibited enhanced survival in the stationary phase compared to the wild type or the slt mutant. PG was purified from exponentially growing bacteria and from bacteria in the stationary phase, and its muropeptide composition was analyzed by high-pressure liquid chromatography. This analysis revealed changes in the muropeptide composition indicating that MltD and Slt have lytic transglycosylase activities. Glycan strand analysis suggested that Slt and MltD have exo and endo types of lytic transglycosylase activity, indicating that Slt is involved mainly in PG turnover and MltD is involved mainly in rearrangement of the PG layer. In this study, we determined the distinct roles of the lytic transglycosylases Slt and MltD in PG metabolism.  相似文献   

13.
An assay has been developed to monitor the activity of the lytic transglycosylases which does not involve the use of radiolabel. Samples of lytic transglycosylase were incubated with isolated and purified insoluble peptidoglycan as substrate for varying lengths of time. Residual insoluble material was removed by ultracentrifugation in a microfuge and the solubilized components were treated with sodium borohydride prior to acid hydrolysis. The optimal conditions for this acid hydrolysis were established to be incubation at 96 degrees C for 1 h in 6 M HCl, in vacuo. The hydrolyzed samples were subjected to amino acid/sugar analysis by cation-exchange chromatography on a Beckman System Gold amino acid analyzer. To effect a clear resolution of muramic acid from serine and glutamic acid, the equilibration buffer was modified to be composed of 33 mM sodium citrate, pH 3.12. The product of the lyase reaction of the lytic transglycosylases are 1,6-anhydromuramyl residues, which are not reduced by the sodium borohydride treatment. On the other hand, the muramyl residues arising at the reducing ends of peptidoglycan after treatment with muramidases (hydrolyases) are reduced to muramitol residues, which elute from the amino acid analyzer prior to aspartic acid. This assay thus distinguishes the activity of the two enzymes and was applied to determine the initial activities of increasing concentrations of a soluble derivative of lytic transglycosylase B from the opportunistic pathogen Pseudomonas aeruginosa.  相似文献   

14.
Li Y  Jin K  Setlow B  Setlow P  Hao B 《Journal of bacteriology》2012,194(17):4537-4545
The SleB protein is one of two redundant cortex-lytic enzymes (CLEs) that initiate the degradation of cortex peptidoglycan (PG), a process essential for germination of spores of Bacillus species, including Bacillus anthracis. SleB has been characterized as a soluble lytic transglycosylase that specifically recognizes spore cortex PG and catalyzes the cleavage of glycosidic bonds between N-acetylmuramic acid (NAM) and N-acetylglucosamine residues with concomitant formation of a 1,6-anhydro bond in the NAM residue. We found that like the full-length Bacillus cereus SleB, the catalytic C-terminal domain (SleBC) exhibited high degradative activity on cortex PG in vitro, although SleB''s N-terminal domain, thought to bind PG, was inactive. The 1.85-Å crystal structure of SleBC reveals an ellipsoid molecule with two distinct domains dominated by either α helices or β strands. The overall fold of SleB closely resembles that of the catalytic domain of the family 1 lytic transglycosylases but with a completely different topological arrangement. Structural analysis shows that an invariant Glu157 of SleB is in a position equivalent to that of the catalytic glutamate in other lytic transglycosylases. Indeed, SleB bearing a Glu157-to-Gln mutation lost its cortex degradative activity completely. In addition, the other redundant CLE (called CwlJ) in Bacillus species likely has a three-dimensional structure similar to that of SleB, including the invariant putative catalytic Glu residue. SleB and CwlJ may offer novel targets for the development of anti-spore agents.  相似文献   

15.
The function of lytic peptidoglycan transglycosylases is poorly understood. Single lytic transglycosylase mutants of Escherichia coli have no growth phenotype. By contrast, mutation of Neisseria gonorrhoeae ltgC inhibited cell separation without affecting peptidoglycan monomer production. Thus, LtgC has a dedicated function in gonococcal cell division.  相似文献   

16.
A cell wall hydrolase homologue, Bacillus subtilis YddH (renamed CwlT), was determined to be a novel cell wall lytic enzyme. The cwlT gene is located in the region of an integrative and conjugative element (ICEBs1), and a cwlT-lacZ fusion experiment revealed the significant expression when mitomycin C was added to the culture. Judging from the Pfam data base, CwlT (cell wall lytic enzyme T (Two-catalytic domains)) has two hydrolase domains that exhibit high amino acid sequence similarity to dl-endopeptidases and relatively low similarity to lytic transglycosylases at the C and N termini, respectively. The purified C-terminal domain of CwlT (CwlT-C-His) could hydrolyze the linkage of d-gamma-glutamyl-meso-diaminopimelic acid in B. subtilis peptidoglycan, suggesting that the C-terminal domain acts as a dl-endopeptidase. On the other hand, the purified N-terminal domain (CwlT-N-His) could also hydrolyze the peptidoglycan of B. subtilis. However, on reverse-phase HPLC and mass spectrometry (MS) and MS-MS analyses of the reaction products by CwlT-N-His, this domain was determined to act as an N-acetylmuramidase and not a lytic transglycosylase. Moreover, the site-directed mutagenesis analysis revealed that Glu-87 and Asp-94 are sites related with the cell wall lytic activity. Because the amino acid sequence of the N-terminal domain of CwlT exhibits low similarity compared with those of the soluble lytic transglycosylase and muramidase (goose lysozyme), this domain represents "a new category of cell wall hydrolases."  相似文献   

17.
Peptidoglycan fragments released by Neisseria gonorrhoeae contribute to the inflammation and ciliated cell death associated with gonorrhea and pelvic inflammatory disease. However, little is known about the production and release of these fragments during bacterial growth. Previous studies demonstrated that one lytic transglycosylase, LtgA, was responsible for the production of approximately half of the released peptidoglycan monomers. Systematic mutational analysis of other putative lytic transglycosylase genes identified lytic transglycosylase D (LtgD) as responsible for release of peptidoglycan monomers from gonococci. An ltgA ltgD double mutant was found not to release peptidoglycan monomers and instead released large, soluble peptidoglycan fragments. In pulse-chase experiments, recycled peptidoglycan was not found in cytoplasmic extracts from the ltgA ltgD mutant as it was for the wild-type strain, indicating that generation of anhydro peptidoglycan monomers by lytic transglycosylases facilitates peptidoglycan recycling. The ltgA ltgD double mutant showed no growth abnormalities or cell separation defects, suggesting that these enzymes are involved in pathogenesis but not necessary for normal growth.  相似文献   

18.
The hypothetical Escherichia coli protein YfhD has been identified as the archetype for the family 1B lytic transglycosylases despite a complete lack of experimental characterization. The yfhD gene was amplified from the genomic DNA of E. coli W3110 and cloned to encode a fusion protein with a C-terminal His(6) sequence. The enzyme was found to be localized to the outer membrane of E. coli, as would be expected for a lytic transglycosylase. Its gene was engineered for the production of a truncated soluble enzyme derivative lacking an N-terminal signal sequence and membrane anchor. The soluble YfhD derivative was purified to apparent homogeneity, and three separate in vitro assays involving high pressure liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used to demonstrate the YfhD-catalyzed release of 1,6-anhydromuro-peptides from insoluble peptidoglycan. In addition, an in vivo bioassay developed using the bacteriophage lambda lysis system confirmed that the enzyme functions as an autolysin. Based on these data, the enzyme was renamed membrane-bound lytic transglycosylase F. The modular structure of MltF was investigated through genetic engineering for the separate production of identified N-terminal and C-terminal domains. The ability to bind peptidoglycan and lytic activity were only associated with the isolated C-terminal domain. The enzymatic properties of this lytic transglycosylase domain were found to be very similar to those of the wild-type enzyme. The one notable exception was that the N-terminal domain appears to modulate the lytic behavior of the C-terminal domain to permit continued lysis of insoluble peptidoglycan, a unique feature of MltF compared with other characterized lytic transglycosylases.  相似文献   

19.
Lytic transglycosylases cleave the beta,1-->4 glycosidic linkages between the N-acetylmuramoyl (MurNAc) and N-acetylglucosaminyl (GlcNAc) residues of peptidoglycan with the concomitant formation of 1,6-anhydro-N-acetylmuramyl reaction products. The genes encoding two hypothetical lytic transglycosylases were identified in the genome of Pseudomonas aeruginosa PAO1 by a BLAST search using membrane-bound lytic transglycosylase B (MltB) from Escherichia coli as the query. The two genes were amplified by PCR and cloned as fusion proteins with C-terminal hexa-His sequences. Expression studies of the two genes in E. coli in the presence of [(3)H]palmitate resulted in the labeling of only one of the two enzymes. This enzyme, named MltB, was overexpressed to form insoluble inclusion bodies. Its gene was engineered to produce a truncated form of the enzyme lacking its N-terminal 17 residues which includes Cys17, the putative site of lipidation. This MltB derivative (named sMltB) was shown to not label with [(3)H]palmitate, and it was overexpressed in soluble form. The second, nonlabeled enzyme was overexpressed in soluble form and hence was named soluble lytic transglycosylase B (SltB). Both sMltB and SltB were purified to apparent homogeneity by a combination of affinity (Ni(2+)-NTA), cation-exchange (Mono S), and gel permeation (Superdex 75) chromatographies. The reaction products released by the two enzymes from purified, insoluble peptidoglycan were characterized by a novel high-performance anion-exchange chromatography (HPAEC) assay. Both enzymes produced the same three major soluble products which were identified as anhydromuropeptides based on ESI-MS analysis (cross-linked anhydrodisaccharide-tetrasaccharide, m/z obs 1824.9; anhydrodisaccharide-pentapeptide, m/z obs 922.2; and anhydrodisaccharide-tripeptide, m/z obs 851.3. The Michaelis-Menten kinetic parameters were also determined for the two enzymes using the same insoluble peptidoglycan substrate by aminosugar compositional analysis of soluble reaction products. At pH 5.8 and in the presence of 0.1% Triton, SltB was found to be more catalytically efficient, as reflected by its k(cat)/K(M) value, than sMltB.  相似文献   

20.
The 70 kDa soluble lytic transglycosylase (Slt70) from Escherichia coli is an exo-muramidase, that catalyses the cleavage of the glycosidic bonds between N -acetylmuramic acid and N -acetylglucosamine residues in peptidoglycan, the main structural component of the bacterial cell wall. This cleavage is accompanied by the formation of a 1,6-anhydro bond between the C1 and O6 atoms in the N -acetylmuramic acid residue (anhMurNAc). Crystallographic studies at medium resolution revealed that Slt70 is a multi-domain protein consisting of a large ring-shaped alpha-superhelix with on top a catalytic domain, which resembles the fold of goose-type lysozyme. Here we report the crystal structures of native Slt70 and of its complex with a 1,6-anhydromuropeptide solved at nominal resolutions of 1.65 A and 1.90 A, respectively. The high resolution native structure reveals the details on the hydrogen bonds, electrostatic and hydrophobic interactions that stabilise the catalytic domain and the alpha-superhelix. The building-block of the alpha-superhelix is an "up-down-up-down" four-alpha-helix bundle involving both parallel and antiparallel helix pairs. Stabilisation of the fold is provided through an extensive packing of apolar atoms, mostly from leucine and alanine residues. It lacks, however, an internal consensus sequence that characterises other super-secondary helical folds like the beta-helix in pectate lyase or the (beta-alpha)-helix in the ribonuclease inhibitor. The 1, 6-anhydromuropeptide product binds in a shallow groove adjacent to the peptidoglycan-binding groove of the catalytic domain. The groove is formed by conserved residues at the interface of the catalytic domain and the alpha-superhelix. The structure of the Slt70-1, 6-anhydromuropeptide complex confirms the presence of a specific binding-site for the peptide moieties of the peptidoglycan and it substantiates the notion that Slt70 starts the cleavage reaction at the anhMurNAc end of the peptidoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号