首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A shortening of the lag phase in dichloromethane (DCM) consumption was observed in the methylobacteria Methylopila helvetica DM6 and Albibacter methylovorans DM10 after prior growth on methanol with the presence of 1.5% NaCl. Neither heat nor acid stress accelerated methylobacterium adaptation to DCM consumption. Sodium azide (1 mM) and potassium cyanide (1 mM) inhibited consumption of DCM by these degraders but not by transconjugants Methylobacterium extorquens AM1, expressing DCM dehalogenase but unable to grow on DCM. This indicates that the degrader strains possess energy-dependent systems of transport of DCM or chloride anions produced during DCM dehalogenation. Inducible proteins were found in the membrane fraction of A. methylovorans DM10 cells adapted to DCM and elevated NaCl concentration.  相似文献   

2.
Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.  相似文献   

3.
Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter methylovorans DM10; cell-free extract of strain DM4; and transconjugant Iethylobacterium extorquens AI1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.  相似文献   

4.
5.
Diabetic heart (diabetes mellitus [DM]) has been shown to attenuate the beneficial effect of ischemic preconditioning (IPC) in rat heart. But the effect of IPC on diabetic rat heart that develops myopathy remains unclear. This study was designed to test the impact of IPC on diabetic cardiomyopathy (DCM) rat heart. Male Wistar rats were grouped as (a) normal, (b) DM (streptozotocin: 65 mg/kg; fed with normal diet), and (c) DCM (streptozotocin: 65 mg/kg; fed with high‐fat diet). Isolated rat hearts from each group were randomly subjected to (a) normal perfusion, (b) ischemia‐reperfusion (I/R), and (c) IPC procedure. At the end of the perfusion experiments, hearts were analyzed for injury, contractile function, mitochondrial activity, and oxidative stress. The results obtained from hemodynamics, cardiac injury markers, and caspase‐3 activity showed that DCM rat displayed prominent I/R‐associated cardiac abnormalities than DM rat heart. But the deteriorated physiological performance and cardiac injury were not recovered in both DM and DCM heart by IPC procedure. Unlike normal rat heart, IPC did not reverse mitochondrial dysfunction (determined by electron transport chain enzymes activity, ATP level, and membrane integrity, expression levels of genes like PGC‐1ɑ, GSK3β, complex I, II, and V) in DCM and DM rat heart. The present study demonstrated that IPC failed to protect I/R‐challenged DCM rat heart, and the underlying pathology was associated with deteriorated mitochondrial function.  相似文献   

6.
7.
Dichloromethane (CH(2)Cl(2) , DCM) is a chlorinated solvent mainly produced by industry, and a common pollutant. Some aerobic methylotrophic bacteria are able to grow with this chlorinated methane as their sole carbon and energy source, using a DCM dehalogenase/glutathione S-transferase encoded by dcmA to transform DCM into two molecules of HCl and one molecule of formaldehyde, a toxic intermediate of methylotrophic metabolism. In Methylobacterium extorquens DM4 of known genome sequence, dcmA lies on a 126 kb dcm genomic island not found so far in other DCM-dechlorinating strains. An experimental search for the molecular determinants involved in specific cellular responses of strain DM4 growing with DCM was performed. Random mutagenesis with a minitransposon containing a promoterless reporter gfp gene yielded 25 dcm mutants with a specific DCM-associated phenotype. Differential proteomic analysis of cultures grown with DCM and with methanol defined 38 differentially abundant proteins. The 5.5 kb dcm islet directly involved in DCM dehalogenation is the only one of seven gene clusters specific to the DCM response to be localized within the dcm genomic island. The DCM response was shown to involve mainly the core genome of Methylobacterium extorquens, providing new insights on DCM-dependent adjustments of C1 metabolism and gene regulation, and suggesting a specific stress response of Methylobacterium during growth with DCM. Fatty acid, hopanoid and peptidoglycan metabolisms were affected, hinting at the membrane-active effects of DCM due to its solvent properties. A chloride-induced efflux transporter termed CliABC was also newly identified. Thus, DCM dechlorination driven by the dcm islet elicits a complex adaptive response encoded by the core genome common to dechlorinating as well as non-dechlorinating Methylobacterium strains.  相似文献   

8.
Abstract The effect of a range of dichloromethane (DCM) concentrations on the growth of five obligate methanotrophic bacteria of the genera Methylomonas, “Methylosinus” , and Methylocystis was assessed. DCM concentrations of 78 mM were bactericidal for all strains. Concentrations of 7.8 mM–156 μM were bacteriostatic for Methylocystis parvus ACM 3309 and Methylomonas aurantiaca HB2, and partially inhibitory for Methylomonas methanica strains ACM 3307 and HB1. “Methylosinus trichosporium” ACM 3311 grew in the presence of up to 780 μm DCM, but a concentration of 7.8 mM was bacteriostatic.  相似文献   

9.
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 s−1, respectively, and the Km values are 9 and 59 μM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants.  相似文献   

10.
BACKGROUND: Dilated cardiomyopathy (DCM) has been suggested to be a consequence of a prior viral infection leading to a chronic inflammatory and immunological reaction that leads to a structural and functional deterioration of the heart. Nevertheless, the results of present studies are conflicting, regarding the natural course of heart diseases associated with detection of viral genome and inflammation. On the other hand, diabetes mellitus (DM) is the leading endocrine disorder worldwide and sufficient to induce a cardiomyopathy. It is not known whether DM contributes to the clinical picture of cardiomyopathy associated with the presence of viral genome or inflammatory cells in the myocardium. Therefore, the present study was undertaken to compare histological, immunohistochemical, biochemical, and functional data as well as the outcome of patients presenting with DCM and positive for DM with patients negative for DM to evaluate for a diabetic contribution in the course of the disease. METHODS: A total of 216 patients were biopsied between January 1998 and April 2003. From 197 patients diagnosed as having DCM, we were able to complete data set regarding the presence of DM in 108 patients, 20 patients with and 88 patients without DM. RESULTS: There was no significant difference regarding age, gender, body mass index, presence of viral genome and inflammatory cells in the myocardium, left ventricular function and diameter, and the degree of heart insufficiency. There was a significant difference of apoptotic cells in the myocardium of patients with DCM and DM compared to patients with DCM alone (1.7+/-1.9 vs. 0.2+/-0.4, p=0.028). During the follow-up of 16 months, left ventricular function improved in both groups significantly, but not between the groups. Death or transplantation-free survival was not significantly different. CONCLUSION: The different findings regarding the presence of apoptotic cells suggest a contribution of pathobiological pathways in the patients with DM to the underlying heart disease.  相似文献   

11.
The genes of dichloromethane (CH2C12, DCM) degradation have been characterized in the aerobic degraders “Gottschalkia methylica” DM15, “Ancylobacter dichloromethanicus” DM16, and Methylobac- terium extorquens DM17, isolated from different regions of Russia. The sequencing of the structural gene dcmA of DCM dehalogenase, followed by phylogenetic analysis, showed that the new degraders possess A-type dehalogenases. The DcmAs of the strains DM15 and DM17 were identical to the known orthologous proteins of Methylorhabdus multivorans DM 13 and Methylobacterium dichloromethanicum DM4, respectively. DcmA of the degrader DM16 differed by three amino acid substitutions from DcmA of strain DM4. In agreement with the organization of the cluster of DCM degradation genes in M. dichloromethanicum DM4, the regulatory gene dcmR and the open reading frame orf353, flanking dcmA, were identified in the new degraders. The similarity of DCM degradation genes in aerobic degraders of different taxonomic position and geographical origin suggests their distribution among methylotrophic bacteria by means of horizontal transfer.  相似文献   

12.
Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and the occurrence of tumors in different species, the mechanism of tumor induction by DCM metabolites produced through the GST pathway remains unclear. In this study a V79 cell line stably transfected with the murine GST theta 1 gene (mGSTT1) was compared to the parent cell line (MZ) to determine how the construct affects DCM metabolism and the sensitivity of the cell line to DNA damage and cytotoxicity. V79 cells were treated with DCM (2.5-10mM) or formaldehyde (150-600muM) for 2h. Also, formaldehyde produced by V79 cytosol metabolism of DCM was measured spectrophotometrically. DNA damage and DNA-protein crosslinks were measured by the standard and proteinase K-modified alkaline single cell gel electrophoresis (SCG) assays. Cytotoxicity was assessed by trypan blue stain exclusion, the Live/Dead((R)) cell viability/cytotoxicity kit for animal cells, and the neutral red assay. After DCM treatment a significant concentration-dependent increase in tail moment in the V79 MZ cells was observed compared to a significant concentration-dependent decrease in tail moment in the V79 mGSTT1 cells. Post-incubation with proteinase K significantly increased DNA migrations in DCM-treated V79 mGSTT1 cells. DCM formed significantly higher levels of formaldehyde in the cytosol of the V79 mGSTT1 cells than in the cytosol of the V79 MZ cells. Results using the cytotoxicity assays were comparable using the trypan blue and Live/Dead((R)) assays, neither showing a difference in response between the two cell lines when exposed to either formaldehyde or DCM. These results indicate that V79 mGSTT1 can metabolize DCM to a genotoxic and cytotoxic metabolite, which is likely formaldehyde. This is the first time that the magnitude of the GSTT1 effect can be observed in mammalian cells without confounding caused by using cells with different genetic backgrounds.  相似文献   

13.
Diabetes mellitus (DM) is a major problem worldwide. Within this patient group, cardiovascular diseases are the biggest cause of morbidity and mortality. Diabetic cardiomyopathy (DCM) is defined as diabetes-associated structural and functional changes in the myocardium, not directly attributable to other confounding factors such as coronary artery disease or hypertension. Pathophysiology of DCM remains unclear due to a lack of adequate animal models reflecting the current pandemic of diabetes, associated with a high increased sugar intake and the ‘Western’ lifestyle. The aim of this study was to develop an animal model mimicking this ‘Western’ lifestyle causing a human-like phenotype of DCM. Twenty-four Sprague–Dawley rats were randomly assigned into a normal or a ‘Western’ diet group for 18 weeks. Glucose and insulin levels were measured with an OGTT. Heart function was assessed by echocardiography and hemodynamic measurements in vivo. Cardiac fibrosis and inflammation were investigated in vitro. ‘Western’ diet given to healthy rats for 18 weeks induced hyperglycemia together with increased AGEs levels, insulin levels and hypertriglyceridemia. Heart function was altered with increased end-diastolic pressure, left ventricle hypertrophy. Changes in vivo were associated with increased collagen deposition and increased PAI-1 levels in the heart. High-sugar diet or ‘Western’ diet causes T2DM and the hallmarks of DCM in rats, reflecting the phenotype of the disease seen in patients. Using this new model of T2DM with DCM might open new insight in understanding the pathophysiology of DCM and on a long term, test targeted therapies for T2DM with DCM patients.  相似文献   

14.
Dichloromethane (DCM) is utilized by the strictly anaerobic, acetogenic mixed culture DM as a sole source of carbon and energy for growth. Growth with DCM was linear, and cell suspensions of the culture degraded DCM with a specific activity of 0.47 mkat/kg of protein. A mass balance of 2 mol of chloride and 0.42 mol of acetate per mol of DCM was observed. The dehalogenation reaction showed similar specific activities under both anaerobic and aerobic conditions. Radioactivity from [14C]DCM in cell suspensions was recovered largely as 14CO2 (58%), [14C]acetate (23%), and [14C]formate (11%), which subsequently disappeared. This suggested that formate is a major intermediate in the pathway from DCM to acetate. Efforts to isolate from culture DM a pure culture capable of anaerobic growth with DCM were unsuccessful, although overall acetogenesis and the partial reactions are thermodynamically favorable. We then isolated bacterial strains DMA, a strictly anaerobic, gram-positive, endospore-forming rod, and DMB, a strictly anaerobic, gram-negative, endospore-forming homoacetogen, from culture DM. Both strain DMB and Methanospirillum hungatei utilized formate as a source of carbon and energy. Coculture of strain DMA with either M. hungatei or strain DMB in solid medium with DCM as the sole added source of carbon and energy was observed. These data support a tentative scheme for the acetogenic fermentation of DCM involving interspecies formate transfer from strain DMA to the acetogenic bacterium DMB or to the methanogen M. hungatei.  相似文献   

15.
Heart disease is the leading cause of death in patients with insulin resistance and type 2 diabetes (DM2). Even in the absence of coronary artery disease and hypertension, functional and structural abnormalities exist in patients with well-controlled and uncomplicated DM2. These derangements are collectively designated by the term diabetic cardiomyopathy (DCM). Changes in myocardial energy metabolism, due to altered substrate supply and utilization, largely underlie the development of DCM. Insulin is an important regulator of myocardial substrate metabolism, but also exerts regulatory effects on intracellular Ca2+ handling and cell survival. The current paper reviews the multiple functional and molecular effects of insulin on the heart, all of which ultimately seem to be cardioprotective both under normal conditions and under ischemia. In particular, the dismal consequences of myocardial insulin resistance contributing to the development of DCM will be discussed.  相似文献   

16.
This experiment was carried out to study a simple and efficient method for in vitro production of rabbit embryos. Newly ejaculated rabbit spermatozoa were used to fertilize superovulated oocytes after capacitation in vitro with four different media: (A) isotonic defined medium (DM)+heparin, (B) DM only,(C) DM+ high ionic strength defined medium (HIS), and (D) DM supplemented with 10mM NaHCO3 (mDM) +HIS supplemented with 10mM NaHCO3 (mHIS). The presumptive zygotes were cultured in M199 supplemented with 10% FCS, 1.25mM Na Pyruvate and 0.1mM EDTA (mM199). The cleavage rates after 24h of incubation were 29.3%, 32.1%, 64.9%, and 91.6% respectively, and the rates of blastocyst formation after 72h were 0, 27.3%, 58.4% and 85.2%, respectively. The results in the (D) treatment were significantly better than the other three treatments (p<0.01). Developmental potential of in vivo and in vitro derived zygotes was also compared using the mM199. The percentages of blastocyst and hatching blastocyst in the two groups were 92.5% and 87.2% after 84h, and 84.9% and 83.7% after 108h, respectively, and the two groups were not significantly different (p>0.05). The developmental progress of the two groups was nearly synchronous towards the end of culture. When IVF embryos from 2- to 4-cell stage were transferred into recipients, the pregnancy rate did not differ from in vivo fertilization, but the rate of live young from IVF was significantly lower than from in vivo. The results of this experiment showed that ejaculated rabbit sperm could be capacitated efficiently after treatment of mDM and mHIS, and rabbit IVF embryos achieved great development in mM199 in vitro.  相似文献   

17.
The cations Ca2+ and K+ and the anions Cl-, HCO3-, and PO4- were studied for their contribution to metacyclic trypomastigote formation of Trypanosoma cruzi in starvation media consisting of phosphate-buffered saline (PBS) + 10 mM proline + 10 mM sodium acetate as well as one of the following salts: 0.035% NaHCO3 (PBSNPA), 0.035% K2CO3 (PBSKPA) or 0.035% K2HPO4 (PBSPPA). Isolates CL and DM28c were activated to transform with 5% CO2 and the percent metacyclogenesis determined after incubation for 96 h in PBS starvation media. Maximal metacyclogenesis was found with CaCl2 and KCl. In the presence of K+, the percent transformation was highest with the phosphate salt, followed by the carbonate and the chloride salts. Cells incubated in PBSNPA and the cationic ionophores A23187 (5 x 10(-6) M), lasalocid (5 x 10(-6) M), and valinomycin (10(-8) M) do not survive; addition of 2 mM CaCl2 or 17 mM KCl to DM28c cells, reversed the lethal action of the ionophores permitting differentiation into metacyclic forms. The addition of CaCl2 to CL cells incubated in ionophores abrogated the lethal effect of the ionophores but transformation was significantly different than in control preparations. Adding KCl to ionophore incubated cells resulted in normal levels of transformation except in the case of valinomycin. DM28c and CL cells incubated in PBSKPA show significantly greater metacyclogenesis in the presence of 5 mM EGTA. These results indicate that exogenous concentrations of several cations and anions significantly influence T. cruzi metacyclogenesis and that the degree of response by the parasite to free ion levels may be strain dependent.  相似文献   

18.
Biodegradation of dichloromethane (DCM) to environmentally acceptable products was demonstrated under methanogenic conditions (35 degrees C). When DCM was supplied to enrichment cultures as the sole organic compound at a low enough concentration to avoid inhibition of methanogenesis, the molar ratio of CH4 formed to DCM consumed (0.473) was very close to the amount predicted by stoichiometric conservation of electrons. DCM degradation was also demonstrated when methanogenesis was partially inhibited (with 0.5 to 1.5 mM 2-bromoethanesulfonate or approximately 2 mM DCM) or completely stopped (with 50 to 55.5 mM 2-bromoethanesulfonate). Addition of a eubacterial inhibitor (vancomycin, 100 mg/liter) greatly reduced the rate of DCM degradation. 14CO2 was the principal product of [14C]DCM degradation, followed by 14CH4 (when methanogenesis was uninhibited) or 14CH3COOH (when methanogenesis was partially or completely inhibited). Hydrogen accumulated during DCM degradation and then returned to background levels when DCM was consumed. These results suggested that nonmethanogenic organisms mediated DCM degradation, oxidizing a portion to CO2 and fermenting the remainder to acetate; acetate formation suggested involvement of an acetogen. Methanogens in the enrichment culture then converted the products of DCM degradation to CH4. Aceticlastic methanogens were more easily inhibited by 2-bromoethanesulfonate and DCM than were CO2-reducing methanogens. When DCM was the sole organic-carbon and electron donor source supplied, its use as a growth substrate was demonstrated. The highest observed yield was 0.085 g of suspended organic carbon formed per g of DCM carbon consumed. Approximately 85% of the biomass formed was attributable to the growth of nonmethanogens, and 15% was attributable to methanogens.  相似文献   

19.
Biodegradation of dichloromethane (DCM) to environmentally acceptable products was demonstrated under methanogenic conditions (35 degrees C). When DCM was supplied to enrichment cultures as the sole organic compound at a low enough concentration to avoid inhibition of methanogenesis, the molar ratio of CH4 formed to DCM consumed (0.473) was very close to the amount predicted by stoichiometric conservation of electrons. DCM degradation was also demonstrated when methanogenesis was partially inhibited (with 0.5 to 1.5 mM 2-bromoethanesulfonate or approximately 2 mM DCM) or completely stopped (with 50 to 55.5 mM 2-bromoethanesulfonate). Addition of a eubacterial inhibitor (vancomycin, 100 mg/liter) greatly reduced the rate of DCM degradation. 14CO2 was the principal product of [14C]DCM degradation, followed by 14CH4 (when methanogenesis was uninhibited) or 14CH3COOH (when methanogenesis was partially or completely inhibited). Hydrogen accumulated during DCM degradation and then returned to background levels when DCM was consumed. These results suggested that nonmethanogenic organisms mediated DCM degradation, oxidizing a portion to CO2 and fermenting the remainder to acetate; acetate formation suggested involvement of an acetogen. Methanogens in the enrichment culture then converted the products of DCM degradation to CH4. Aceticlastic methanogens were more easily inhibited by 2-bromoethanesulfonate and DCM than were CO2-reducing methanogens. When DCM was the sole organic-carbon and electron donor source supplied, its use as a growth substrate was demonstrated. The highest observed yield was 0.085 g of suspended organic carbon formed per g of DCM carbon consumed. Approximately 85% of the biomass formed was attributable to the growth of nonmethanogens, and 15% was attributable to methanogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号