首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal function was investigated in non-hydrated normal dogs and in dogs with slight isotonic hypervolaemia before and after increasing the excreting renal mass by connecting a pair of isolated kidneys into their circulation. After connecting the isolated kidneys to the perfusor's circulation, the excreting capacity of the in situ kidneys decreased markedly in both groups, without any change in the arterial blood pressure. Their urine output calculated for 100g kidney weight dropped from 0.52 +/- 0.43 to 0.30 +/- 0.18 ml/min in the non-hydrated group, and from 2.3 +/- 1.17 to 1.33 +/- 0.96 ml/min in the hydrated one. The urine flow of the isolated kidneys was 0.29 +/- 0.12 ml/min in the non-hydrated and 1.11 +/- 0.53 ml/min in the hydrated animals. Sodium excretion displayed similar changes. The findings suggest, that the excretory capacity of the kidneys and its distribution between the two kidneys is regulated very precisely. In our opinion, one or more "natriuretic factor" may be responsible for this precise regulation. The supposed factor seems to be produced extrarenally, and is only "used up" by the kidneys. It appears to exert its effect on the tubular part of the nephron, regulating the permeability of the tubular wall and controlling in this way the reflux of sodium and water from the capillary side to the tubular lumen. The decreased excreting capacity of the kidneys is attributed to an increased consumption of the natriuretic factor by four kidneys.  相似文献   

2.
Studies were performed in conscious, chronically catheterized male Sprague-Dawley rats to investigate the effect of administered atrial natriuretic peptide (ANP) on blood pressure, renal hemodynamics and urinary electrolyte excretion. Studies were performed on young adult (3-4 month old) rats and on aging rats (18-24 months of age). Low dose ANP (80 ng/kg/min for 60 min) had no effects on renal hemodynamics in either young or old rats and produced only a slight blood pressure reduction in young animals. No effect on urinary electrolyte excretion was evident in young rats whereas in the old animals, low dose ANP produced large rises in the rate of sodium excretion, fractional excretion of sodium and urine flow rate. A four fold higher dose of ANP evoked a moderate natriuretic and a marked antihypertensive response in young rats. Time control studies indicated that time alone had no influence on urinary sodium excretion rate, the fractional excretion of sodium or urine flow rate. These studies indicate a much enhanced sensitivity to the natriuretic effects of administered ANP by the kidneys of old rats.  相似文献   

3.
We studied if the effect of mechanical ventilation induced to keep arterial blood gas values within normal physiological limits has any influence on renal sodium excretion in anesthetized dogs (n = 17) subjected to acute unilateral renal denervation. Compared to the control and the postcontrol periods, ventilation elevated arterial pO2 from 86 +/- 5 to 96 +/- 5 mmHg and blood pH from 7.37 +/- 0.02 to 7.41 +/- 0.01 while arterial pCO2 was decreased from 38 +/- 2 to 33 +/- 1 mmHg (p less than 0.05 in all cases). Compared to the innervated kidney urine flow, urinary sodium and potassium excretion from the denervated kidney were markedly elevated both during spontaneous respiration and during mechanical ventilation but GFR and cPAH were similar on the two sides. Ventilation decreased sodium excretion by the denervated kidney from 314 +/- 26 to 252 +/- 31 mumols/min/100 g k. w. (p less than 0.05). No other excretory changes were noted either in the innervated or in the denervated kidneys. Difference in sodium excretion between innervated and denervated kidneys was decreased from 209 +/- 19 to 126 +/- 20 mumole/min/100 g k. w. (p less than 0.001), due to the ventilation induced diminution of sodium excretion from the denervated kidney. It is concluded that mechanical ventilation of anesthetized dogs modifies sodium excretion, and this phenomenon can be demonstrated only in the denervated kidney.  相似文献   

4.
5.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

6.
The effects of felodipine on renal hemodynamics and excretion were evaluated in the anesthetized dog. Unilateral renal arterial infusion of felodipine produced ipsilateral increases in the absolute and fractional excretion of sodium and water which were greater than those of potassium; these effects occurred in the absence of changes in mean arterial pressure, renal blood flow, or glomerular filtration rate. There were no significant effects on renal hemodynamic or excretory function in the contralateral kidney. The unilateral renal arterial infusion of isotonic saline or vehicle produced no significant effects on renal hemodynamic or excretory function in either ipsilateral or contralateral kidney. Felodipine, a calcium antagonist with vasodilator antihypertensive properties, in doses which do not affect systemic or renal hemodynamics in the dog, increased urinary flow rate and sodium excretion by decreasing renal tubular water and sodium reabsorption. As a vasodilator antihypertensive agent, felodipine possesses potentially advantageous diuretic and natriuretic properties.  相似文献   

7.
Renal excretory and circulatory responses to nicotine were investigated in anesthetized dogs under three sets of conditions: (a) infusion of nicotine into the left renal artery (ia) at a dose of 0.5 microgram X min-1 X kg body wt-1 X 15 min; (b) ia nicotine after 1.0 mg/kg ia propranolol; and (c) ia nicotine after bilateral adrenalectomy. Measured and calculated left and right renal excretory variables included sodium, potassium, and chloride excretion rates (UNaV, UKV, and UClV, respectively), total solute excretion (UOsV), glomerular filtration rate (GFR), fractional sodium excretion (FENa), and urine flow rate. Systemic arterial pressure and left renal artery blood flow (RBF) were also measured. In seven intact dogs administered nicotine alone, there were significant increases in UNaV, UClV, UOsV, GFR, and urine flow rates from both kidneys. However, nicotine did not significantly affect UKV, FENa, arterial pressure, or RBF. The lack of circulatory effects of nicotine was also observed after either propranolol or adrenalectomy. However, when nicotine was administered after propranolol, the drug evoked significant decreases in UOsV, UNaV, UClV, and GFR, compared with prenicotine values. When nicotine was administered after bilateral adrenalectomy, the drug evoked decreases in the excretory parameters similar to those observed after propranolol. These findings seem to support several inferences: (a) nicotine stimulates renal excretory functions-the alkaloid is saluretic and diuretic; (b) the action of nicotine on the kidney is mediated mainly by the release of catecholamines from the adrenal medulla; (c) catecholamines released by nicotine act mainly on beta-adrenergic receptors; and (d) the saluresis prompted by the release of catecholamines in response to nicotine is due to a subsequent increase in GFR.  相似文献   

8.
The function of innervated and denervated kidney was compared in clearance studies with conscious dogs. The animals were prepared for experiments by unilateral renal denervation and surgical division of the bladder to form two hemibladders enabling separate urine collection from two kidneys. The mean urine flow was 6% higher for the denervated kidney (not significant) while mean differences for osmolar clearance (+ 13%), sodium excretion (+21%) and GFT (+5%) were all significant (P less than 0.05). When corrected to 100 ml GFR, sodium excretion was not significantly higher for the denervated kidney. In most experiments higher sodium excretion on the denefvated side was associated with higher GFR. Thus, contrary to some earlier views, a slight increase in the excretory function which follows denervation of the kidney is demonstrable also in conscious undisturbed animals. The data suggest that increased haemodynamics of the denervated kidney are responsible for higher excretion, but do not exclude a contribution of inhibited tubular reabsorption.  相似文献   

9.
The influence of atrial natriuretic factor on several parameters of cardiovascular system and renal excretory function in spontaneously hypertensive rats has been investigated. The exogenously administered atrial natriuretic factor, not influencing the arterial pressure level and electrolyte concentration in the urine, at the same time breaks the links between APmax and the intensity of electrolyte excretion in urine.  相似文献   

10.
Renal formation of serotonin by decarboxylation of its amino acid precursor L-5-hydroxytryptophan (L-5-HTP) has been demonstrated with renal tissue homogenates and isolated perfused rat kidneys. Our objective in the present study was to determine whether the conversion of L-5-HTP to serotonin was associated with functional changes by kidneys in vivo. Renal clearance studies were conducted in anesthetized, volume-expanded male Sprague-Dawley rats receiving either saline (n = 9) or L-5-HTP (15 and 75 micrograms/min iv, n = 9). No change in mean arterial pressure was measured during infusions of L-5-HTP at either dose, whereas glomerular filtration rate (GFR), as measured by the clearance of inulin, and effective renal plasma flow (CPAH) decreased by 34 +/- 5% (mean +/- SE, P less than 0.001) and 26 +/- 7% (P greater than 0.07), respectively. Urine flow and sodium excretion decreased by 41 +/- 9% (P less than 0.01). Serotonin and 5-HTP were determined in urine and plasma using HPLC. High levels of 5-HTP were present in plasma, but not urine. Urinary serotonin increased in the rats receiving L-5-HTP without concomitant increases in plasma serotonin. More than 20% of the infused L-5-HTP was recovered in the urine as serotonin. The decarboxylase inhibitor carbidopa (20 micrograms/min) markedly reduced urinary serotonin excretion in the rats which received L-5-HTP and reversed the changes in GFR, CPAH, urine flow, and sodium excretion. Infusions of the amino acid precursor of L-5-HTP, L-tryptophan (n = 7), did not alter kidney function or increase plasma or urinary 5-HTP or serotonin levels. These results are consistent with the intrarenal formation of serotonin by renal decarboxylase with attendant alterations in renal hemodynamics and salt and water excretion.  相似文献   

11.
The evidence supporting a role for direct neurogenic control of renal function was investigated in twenty anaesthetized dogs. Unilateral renal sympathectomy was induced by 0.5 mg/kg/min of lidocain infusion into the left renal artery and the kidney function changes were compared to those observed in the right non infused kidney. The renal parameters were similar in the kidneys during the control periods. 0.5 mg/kg/min of lidocain infusion into the left renal artery resulted in significant reductions of the RBF, GFR, urine and sodium excretion in the left kidney. The intrarenal lidocain infusion induced a small decrease of the arterial blood pressure but this can not explain the changes observed in the left kidney. The modifications of the right kidney function during lidocain infusion were significantly less than those observed in the left kidney. Comparing the measured RBF and the renal blood flow calculated by the CPAH in the left kidney during the lidocain infusion, we have found a marked difference, when the decrease of the calculated RBF was greater. We believe that effects of pharmacological denervation can be best explained by the intrarenal hemodinamically mediated changes. The sympathectomy produces a considerable vasoconstriction in the renal cortical vascular bed, subsequently it decreases the RBF, GFR renal sodium and water excretion. But the lidocain blocks the sympathetic nerves influencing the renal medullary vessels and the renal medullary blood flow increases. These observations are not consistent with the notion that renal nerves are at least partially responsible for the natriuresis accompanying salt loading.  相似文献   

12.
Thomas P. Green 《Life sciences》1984,34(22):2169-2176
The effects on renal sodium excretion of two systemic vasodilators, hydralazine and diazoxide, were investigated in volume expanded, anesthetized rats with unilaterally denervated kidneys. Urinary sodium excretion and fractional excretion of filtered sodium increased following hydralazine but decreased following diazoxide. Changes in renal hemodynamics were dissimilar as well: renal plasma flow was increased following hydralazine, but unchanged with diazoxide. All changes in renal sodium excretion and renal hemodynamics following hydralazine were prevented by pretreatment with indomethacin. Renal denervation accentuated the increases in fractional sodium excretion and renal blood flow that occured following hydralazine.Hydralazine and diazoxide differ substantially in their effects on renal sodium excretion, apparently due to the stimulation of renal prostaglandins by the former agent. Although renal innervation attenuates the natriuretic effect of hydralazine, stimulation of the sympathetic nervous system does not account for differences in the renal effects of these two drugs.  相似文献   

13.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

14.
Several previous observations support the hypothesis that increased adenosine production and release mediate, at least in part, the reductions in renal blood flow and glomerular filtration rate in ischemic acute renal failure (ARF). If this hypothesis is correct, dipyridamole should potentiate these changes, since it blocks cellular adenosine uptake, thereby increasing the concentration and potentiating the effects of extracellular adenosine. Moreover, theophylline should block the effects of dipyridamole, since it is an adenosine receptor antagonist. These predictions were tested in three groups of anesthetized rats. All rats were subjected to 30 min of left renal artery occlusion; 30 min after relieving the occlusion, a 45-min clearance period was begun. The control group was given saline i.v.; the two experimental groups received either dipyridamole (24 micrograms X min-1 X kg-1) or dipyridamole plus theophylline i.v. (111 mumol/kg as a prime, 1.1 mumol X min-1 X kg-1 as an infusion). In the control group, the previously ischemic left kidneys exhibited decreased clearances of para-aminohippurate and inulin (CPAH and CIn), filtration fraction (FF), and urine/plasma inulin concentration (U/PIn), and increased urine flow (V), Na excretion (UNaV), and fractional Na excretion (FENa) in comparison with the contralateral right kidney. Dipyridamole pretreatment did not affect the right kidney, but it intensified the reductions in left kidney CPAH, CIn, and FF. Theophylline blocked all these effects of dipyridamole on the left kidney, and increased renal plasma flow (CPAH/PAH extraction), despite a decrease in systemic arterial blood pressure. These results are further support for the hypothesis that adenosine mediates, at least in part, the hemodynamic changes in postischemic ARF in rats.  相似文献   

15.
Experiments were conducted to assess the effect of furosemide or amiloride alone and a combination of both agents on each kidney in anesthetized 2-kidney, 1 clip Goldblatt hypertensive rats (n = 25). Intravenous infusion of furosemide alone (1.02 mg/kg.hr) significantly reduced the blood pressure by 14 +/- 5 mmHg. There were 6- to 10-fold increases in water, absolute sodium and fractional sodium excretions and a 2-fold increase in potassium excretion in the nonclipped kidney. A smaller but significant increase in the excretory function was also observed in the clipped kidney. There was no significant change in GFR of both kidneys. Indomethacin pretreatment (2 mg/kg) failed to significantly alter the vasodepressor and renal responses to furosemide in both hypertensive and normal rats. Removal of the renal artery clip from the hypertensive rats reduced the blood pressure by 12 +/- 3 mmHg and enhanced the function of the ipsilateral, unclipped kidney. Subsequent administration of furosemide further increased the excretory response. Administration of amiloride alone (2.4 mg/kg.hr) or with furosemide into hypertensive rats reduced the arterial pressure and increased excretion rates of urine flow and urinary sodium. Potassium excretion rate decreased bilaterally in amiloride treated rats but did not alter significantly in rats which received a combination of amiloride and furosemide. These results indicate that diuretics ameliorate the excretory function of both the stenotic kidney and the nonstenotic kidney and that the improvement of the kidney function is independent of prostaglandin. Furthermore, removal of the stenosis accentuates the beneficial effect of diuretics on the kidney.  相似文献   

16.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine. S1P has been indicated to play a significant role in the cardiovascular system. It has been shown that the enzymes for S1P metabolism are expressed in the kidneys. The present study characterized the expression of S1P receptors in the kidneys and determined the role of S1P in the control of renal hemodynamics and sodium excretion. Real-time RT-PCR analyses showed that S1P receptors S1P1, S1P2, and S1P3 were most abundantly expressed in the renal medulla. Immunohistochemistry revealed that all three types of S1P receptors were mainly located in collecting ducts. Intramedullary infusion of FTY720, an S1P agonist, produced a dramatic increase in sodium excretion by twofold and a small but significant increase in medullary blood flow (16%). Administration of W146, an S1P1 antagonist, into the renal medulla blocked the effect of FTY720 and decreased the sodium excretion by 37% when infused alone. The antagonists of S1P2 and S1P3 had no effect. FTY720 produced additive natriuretic effects in combination with different sodium transporter inhibitors except amiloride, an epithelial sodium channel blocker. In the presence of nitric oxide synthase inhibitor l-NAME, FTY720 still increased sodium excretion. These data suggest that S1P produces natriuretic effects via activation of S1P1 in the renal medulla and this natriuretic effect may be through inhibition of epithelial sodium channel, which is nitric oxide independent. It is concluded that S1P is a novel diuretic factor in the renal medulla and may be an important regulator of sodium homeostasis.  相似文献   

17.
It is well established that activation of endothelin B (ETB) receptor induces natriuresis and diuresis and thus reduces blood pressure. However, the site of action of ETB receptor is debatable. The present study was undertaken to address the role of renal medullary ETB receptor in renal excretory function. In volume-expanded Sprague-Dawley rats, infusion of the ETB antagonist A192621 at 0.5 mg/kg/hr to the renal medulla induced an immediate and significant reduction of urine flow rate that was 87.5% +/- 7.1%, 68% +/- 20%, and 58.3% +/- 15.5% of the control value at 10, 30, and 60 mins, respectively (n=5, P < 0.05 at each time point). Following intramedullary infusion of A192621, urinary sodium excretion remained unchanged during the first 20 mins but started to decline thereafter with a maximal effect at 60 mins. Changes in urinary excretion of potassium and chloride followed the same pattern of changes as for urinary sodium. In contrast, urinary osmolality gradually and significantly increased (control: 419 +/- 66; A192621 at 60 mins: 637 +/- 204 mOsm/kg H2O, P < 0.05). Over a 60-min period of intramedullary infusion of A192621, none of the hemodynamic parameters examined, including mean arterial pressure, renal blood flow, or medullary blood flow, were affected. These data suggest that: (i) intramedullary blockade of ETB receptor produces antidiuresis and antinatriuresis independently of hemodynamic changes, and (ii) the immediate response to intramedullary blockade of ETB receptor is the reduction of water excretion followed by the reduction of sodium excretion.  相似文献   

18.
To determine whether the renal responses to atrial natriuretic factor (ANF) are altered in the diabetic state, the diuretic and natriuretic responses to ANF (0.25 microgram.kg-1.min-1, i.v.) were measured in streptozotocin (STZ) induced diabetic (DIA) rats. Urine flow and sodium excretion were measured before and after ANF from innervated and denervated kidneys in anesthetized (Inactin 0.1 g/kg, i.p.) control and DIA rats (Sprague-Dawley rats injected with vehicle or STZ 65 mg/kg, i.p., respectively, 2 weeks prior to the experiment). Blood glucose levels were significantly elevated in the DIA group compared with the control group. ANF produced a significantly blunted diuresis and natriuresis in DIA rats compared with control rats. In addition, reducing the hyperglycemia in DIA rats by treatment with insulin (third group) reversed the blunted urine flow and sodium excretion responses to ANF. This study demonstrates that (i) there is a blunted natriuresis and diuresis to ANF in the STZ-induced DIA rats, and (ii) restoring the glucose levels to normal by insulin treatment in the DIA rats normalized the renal responses to ANF.  相似文献   

19.
To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.  相似文献   

20.
The experiments were carried out on unanaesthetized dogs with exteriorized ureters for separate urine collection from the left (denervated) and the right (intact) kidney. The osmolality and concentrations of sodium, potassium, calcium, magnesium, zinc, copper, chloride and creatinine were determined in the plasma as well as in the urine of the two kidneys. The function of the denervated and the innervated kidney was compared prior to and after indomethacin administration (5.0 mg/kg b.w.). The excretory function of both kidneys was also compared after furosemide treatment alone (0.5 mg/kg b.w.) as well as indomethacin pretreatment. Renal denervation increased urine flow rate, calcium and copper excretion. After administration, sodium excretion from the denervated kidney was higher than that from the intact one. Calcium excretion of the two kidneys did not differ significantly, while copper excretion from the denervated kidney was diminished, Furosemide administration after pretreatment with indomethacin did not lead to any difference between the denervated and intact kidney. The results show that renal nerves and prostaglandins participate jointly in the regulation of sodium, copper and calcium excretion. Renal prostaglandins do not change the response of the denervated kidney to furosemide as compared to the intact kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号