首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased expiration of ethane and pentane by mice treated with hepatotoxic doses of acetaminophen suggests the possibility of oxidant mechanisms associated with the necrosis. However, studies in rats are not consistent with oxidant stress mechanisms causing the damage, because acetaminophen given to rats does not increase GSSG efflux, a sensitive index of intrahepatic oxidant stress. To compare the extent of oxidant stress generated by acetaminophen in mice versus rats, hepatic content and biliary efflux of GSSG and GSH in mice have been examined. Bile was collected from anesthetized male ICR mice before and after intraperitoneal administration of acetaminophen (325 mg/kg, 2.15 mmol/kg), t-butyl hydroperoxide (TBHP) (1.5 mmol/kg), diethyl maleate (400 mg/kg, 2.33 mmol/kg, in corn oil) or saline (control) and GSH and GSSG were measured by the enzymatic recycling method of Tietze. An increase in biliary GSSG efflux was produced by t-butyl hydroperoxide, but not by the other agents. Biliary GSH/GSSG ratios decreased in acetaminophen-treated animals, presumably reflecting the marked depletion of hepatic GSH, since a similar decrease was observed with non-hepatotoxic doses of diethyl maleate. The failure of acetaminophen to increase the hepatic content or biliary efflux of GSSG in ICR mice is not consistent with the view that oxidant stress mechanisms cause the damage, despite the increases in alkanes expired after acetaminophen administration in this specific animal model.  相似文献   

2.
Intrabiliary glutathione hydrolysis. A source of glutamate in bile   总被引:5,自引:0,他引:5  
High concentrations of glutathione (GSH) and two of its constituent amino acids, glutamate and glycine, are normally found in rat bile. To examine the role of intrabiliary GSH hydrolysis as a source of these amino acids, as well as of cystine in bile, the biliary excretion of GSH and free amino acids was measured in normal male Sprague-Dawley rats; in animals given either phenol 3,6-dibromphthalein disulfonate or diethyl maleate, inhibitors of GSH secretion into bile; and after a retrograde intrabiliary infusion of (alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125), an irreversible inhibitor of gamma-glutamyl transferase activity. Total concentration of amino acids in normal rat bile ranged from 4 to 7 mM and was more than double the concentration in plasma (2-3 mM). Although most amino acids were detected in bile, glutamate and glycine were the most prevalent (1.2 and 1.0 mM, respectively), followed by the branched chain amino acids valine and leucine. The administration of phenol 3,6-dibromphthalein disulfonate (180 mumol/kg, intravenous), or of diethyl maleate (1 mmol/kg, intraperitoneal), resulted in a marked decrease in the biliary excretion of GSH, as well as a decrease in the excretion of glutamate, cystine, and glycine; however, the effects of these agents were not specific for the amino acid constituents of GSH. Following retrograde intrabiliary infusion of AT-125 (10 mumol/kg), there was an immediate and sustained doubling in the rate of biliary excretion of both GSH and glutathione disulfide and a marked decrease in the rate of excretion of glutamate. Varying the dose of AT-125 (0-20 mumol/kg) resulted in an inverse linear relation between hepatic gamma-glutamyl transferase activity and the biliary excretion of intact GSH. These findings suggest that most, if not all, of the free glutamate in excreted bile is formed from the intrabiliary hydrolysis of GSH. Prior to hydrolysis within the biliary tree, substantial concentrations of GSH must be transported from liver cells into bile; minimal canalicular concentrations of this tripeptide are estimated at 5 mM.  相似文献   

3.
Glutathione S-transferase activity was determined in rat, rabbit, and guinea pig serum using styrene 7,8-oxide (SO) and benzo (a) pyrene 4,5-oxide (4,5-BPO) as substrates. Of the species tested, rat had the highest transferase activity (62.5 and 3.2 nmol/min/ml serum for SO and 4,5-BPO, respectively) and rabbit had the lowest activity. Glutathione S-transferase activity was 60% higher in serum from male rats than in female rats. In rats, serum enzyme specific activities (nmol/min/mg protein) were less than 1% of hepatic enzyme activities with SO, 4,5-BPO, 1,2-dichloro-4-nitrobenzene (DCNB), and 1-chloro-2,4-dinitrobenzene (DNCB). Glutathione S-transferase activity was also determined in rat serum during perinatal development. Serum from rats at 18 days of gestation or from 1- and 4-day-old animals had barely detectable transferase activity. Activity increased with age and reached a maximum in 140-day-old animals. The intraperitoneal administration of diethyl maleate (DEM) (0.8 ml/kg) or L-methionine-DL-sulfoximine (MS) (200 mg/kg) to male rats had no effect on serum or hepatic glutathione S-transferase activities 2 or 26 hr after dosing. Treatment with carbon tetrachloride (CCl4) (1 m1/kg) caused an 11-fold increase in serum transferase activity and a 40% decrease in liver specific activities 24 hr after administration.  相似文献   

4.
Summary Effect of intraperitoneal administration (5 mmol/kg of body weight) of glucose- cysteine adduct (glc-cys) as a cysteine prodrug in rat tissues was studied. Cysteine levels in liver and kidney increased to 1.08 and 1.98mol per g or ml, respectively, at 2h after the administration. GSH levels did not change substantially. However, when glc-cys was injected to rats treated with diethyl maleate, a GSH-depleting agent, the decreased GSH levels were restored rapidly. The recoveries in liver and kidney were 72% at 1h and 66% at 2h, respectively, after glc-cys administration. Metabolism of glc-cys was assessed by urinary excretion of glc-cys, sulfate and taurine. Average excretion of glc-cys was 2.86mmol/kg/24h after glc-cys administration. Increased excretions of sulfate and taurine were 0.77 and 0.14mmol/kg/24h, respectively. Data show that, although glc-cys excretion was relatively rapid, glc-cys was effectively utilized for GSH synthesis in GSH-depleted tissues.  相似文献   

5.
Isolated spermatocytes and spermatids from hamsters contained a large amount of glutathione (GSH) (approximately 40 and 30 nmol GSH/mg protein, respectively), but showed a spontaneous decrease of GSH content during prolonged incubation (t1/2 approximately 35 h). Incubation of the germ cells in the presence of the glutathione biosynthesis inhibitor buthionine sulphoximine (BSO) provided evidence that the cells can perform glutathione synthesis. This synthesis, however, was not sufficient to maintain the GSH content of the isolated cells, or to restore the cellular GSH pool after depletion caused by exposure of the cells to the glutathione S-transferase substrate, diethyl maleate (DEM). Cultured Sertoli cells, containing approximately 10 nmol GSH/mg protein, had a more active BSO-sensitive GSH synthesis system. The Sertoli cells, but also tubule fragments containing Sertoli cells and germ cells, were able to restore their GSH pool after DEM-induced depletion. DEM treatment of the tubule fragments resulted in a 90% decrease of the GSH content of the spermatocytes and spermatids present within the fragments. The GSH levels of the tubule fragments and the enclosed germ cells were restored during a subsequent incubation in the absence of DEM. As indicated above, such a recovery was not observed for isolated spermatocytes and spermatids. The results illustrate the importance of Sertoli cell-germ cell interaction, and point to a role of Sertoli cells in glutathione synthesis by the germ cells.  相似文献   

6.
7.
Using the model of glutathione (GSH) depletion, possible role of GSH in the maintenance of blood-brain barrier (BBB) integrity was evaluated in rats. Administration (ip) of GSH depletors, diethyl maleate (DEM, 1–4 mmol/kg), phorone (2–3 mmol/kg) and 2-cyclohexene-1-one (CHX, 1 mmol/kg), to male adults was found to deplete brain and liver GSH and increase the BBB permeability to micromolecular tracers (sodium fluorescein and [14C]sucrose) in a dose-dependent manner at 2h. However, BBB permeability to macromolecular tracers such as horseradish peroxidase and Evan's blue remained unaltered. It was also shown that observed BBB permeability dysfunction was associated with brain GSH depletion. A lower magnitude of BBB increase in rat neonates, as compared to adults, indicated a possible bigger role of GSH in the BBB function of mature brain. The treatment with N-acetylcysteine, methionine and GSH provided a partial to full protection against DEM-induced brain (microvessel) GSH depletion and BBB dysfunction; however, the treatment with -tocopherol, ascorbic acid and turmeric were not effective. Our studies showed that cerebral GSH plays an important role in maintaining the functional BBB integrity.  相似文献   

8.
Intraperitoneal administration of the volatile hydrocarbon, naphthalene, resulted in severe bronchiolar epithelial cell necrosis in mice, while hepatic or renal necrosis was not observed. Pulmonary damage and mortality by naphthalene were increased by prior treatment with diethyl maleate and decreased by prior treatment with piperonyl butoxide (1600 mg/kg). SKF 525A pretreatment had no effect on naphthalene-induced pulmonary damage. Administration of [14C]naphthalene resulted in the covalent binding of radiolabel to tissue macromolecules. Highest levels of binding occurred in lung, liver and kidney. Levels of covalent binding reached a maximum 2–4 h after treatment and corresponded to rapid glutathione depletion in lung and liver. Covalent binding was dose-dependent and showed a threshold between 200 and 400 mg/kg which coincided with almost total depletion of tissue glutathione levels. Covalent binding of reactive metabolites was increased 3–4-fold by prior treatment with diethyl maleate, and was decreased 3–4-fold by pretreatment with piperonyl butoxide. These studies support the view that naphthalene-induced pulmonary damage is mediated by the cytochrome P-450-dependent metabolism of naphthalene and that glutathione plays an important role in the detoxification of the lung damaging metabolite(s).  相似文献   

9.
In vivo treatment of fasted male rats with 1,2-dibromoethane (DBE) (0.4 mmol/kg) or carbon tetrachloride (CCl4) (4 mmol/kg) was found to rapidly alter the activities of liver cytosolic and microsomal glutathione S-transferases. Microsomal activities towards chloro-2,4-dinitrobenzene (CDNB) were increased 2 h after either treatment. Cytosolic activities towards CDNB and 3,4-dichloronitrobenzene (DCNB), but not 1,2-epoxy-3-(p-nitrophenoxy)-propane (ENPP), were selectively and transiently decreased after either treatment. Time course studies in DBE animals indicated that the decrease in cytosolic activity was not evident until 2 h although liver glutathione (GSH) concentrations were diminished within 15 min. In contrast, in CCl4 animals the decrease in cytosolic activity was evident within 15 min and was not accompanied by diminished GSH concentrations. By 4 h, cytosolic activities had rebounded to control levels in both DBE and CCl4-treated animals. Kinetic studies of the enzyme in liver cytosol from animals 2 h after treatment with DBE or CCl4 indicated that both treatments decreased the apparent Vmax while neither treatment altered the apparent Km. This pattern of change allows exclusion of a simple competitive mechanism of enzyme inhibition, but cannot distinguish between reversible non-competitive inhibition and irreversible inhibition. It is possible that the observed decreases in the activities of the abundant cytosal enzyme are due to 'sacrificial' covalent linkages between the enzyme and reactive metabolites of DBE or CCl4.  相似文献   

10.
11.
The administration of a single dose of diethyl maleate (DEM) to fed rats elicited a drastic decrease in the content of reduced glutathione (GSH) both in liver and lung tissues after 6 h of treatment. Cellular GSH depletion induced by DEM was accompanied by a marked increase in pulmonary lipid peroxidation which was completely abolished by (+)-cyanidanol-3, without changes in the liver. Superoxide dismutase (SOD) activity remained unchanged in both tissues in this situation. Hepatic and pulmonary GSH depletion induced by a second dose of DEM given 24 h later produced a further increase in lung lipid peroxidation and a diminution of pulmonary SOD activity. In this condition, hepatic lipid peroxidation and SOD activity were not altered. These results indicate that lung and liver tissues exhibit a different lipid peroxidative response to chemically-induced GSH depletion.  相似文献   

12.
After 12, 18, and 24 h of oral administration of carbon tetrachloride (as a 1:1 mixture with mineral oil: 4 ml/kg body weight) to rats, the activity of caspase-3-like protease in the liver increased significantly compared to that in the control group that was given mineral oil (4 ml/kg). In plasma, the activity of caspase-3 was barely detectable in the control rat, but increased significantly 24 h after drug administration along with a dramatic increase in glutamate oxaloacetate transaminase. These results indicate that carbon tetrachloride causes apoptosis in the liver by activating caspase-3, which is released to plasma by secondary necrosis. After 18 and 24 h of carbon tetrachloride administration, the liver concentration of hydrophilic vitamin C was decreased significantly, while that of hydrophobic vitamin E was not affected. The plasma concentration of vitamins C and E was not influenced significantly. These results suggest that carbon tetrachloride induces oxidative stress mainly in the aqueous phase of the liver cell.  相似文献   

13.
14.
Two compounds that deplete glutathione (buthionine sulfoximine and diethyl maleate) with different mechanisms of action decrease body temperature and increase tolerance to complete global cerebral ischemia, both correlating closely with the glutathione concentration decrease. Glutathione apparently participates in the regulations of these functional parameters. GSH diethyl ester does not influence the latter, though it increases moderately the GSH concentration. Injection of GSH ester into the cerebral ventricles or subcutaneously selectively increases the GSH level in the brain and liver. An influence of the brain on the glutathione system in the liver was revealed. Diethyl maleate and GSH ester increase the activity of glutathione metabolizing enzymes under certain conditions.  相似文献   

15.
Oxidative stress is involved in the pathogenesis of chemically mediated liver injury. Since glycosaminoglycans possess antioxidant activity, the aim of this work was to assess the protective effects of hyaluronic acid and chondroitin-4-sulphate treatment in a model of carbon tetrachloride-induced liver injury. Liver damage was induced in male rats by an intraperitoneal injection of carbon tetrachloride (1 ml/kg in vegetal oil). Serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde, plasma TNF-alpha, hepatic reduced glutathione and catalase, and myeloperoxidase, an index of polymorphonuclear infiltration in the jeopardised hepatic tissue, were evaluated 24 h after carbon tetrachloride administration. Carbon tetrachloride produced a marked increase in serum alanine aminotransferase and aspartate aminotransferase activities, primed lipid peroxidation, enhanced plasma TNF-alpha levels, induced a severe depletion of reduced glutathione and catalase, and promoted neutrophil accumulation. Intraperitoneal treatment of rats with hyaluronic acid (25 mg/kg) or chondroitin-4-sulphate (25 mg/kg) failed to exert any effect in the considered parameter, while the combination treatment with both glycosaminoglycans (12,5 + 12,5 mg/kg) decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, inhibited lipid peroxidation by reducing hepatic malondialdehyde, reduced plasma TNF-alpha, restored the endogenous antioxidants, and finally decreased myeloperoxidase activity. These results suggest that hyaluronic acid and chondroitin-4-sulphate possess a different antioxidant mechanism and consequently the combined administration of both glycosaminoglycans exerts a synergistic effect with respect to the single treatment.  相似文献   

16.
The pharmacokinetics of theophylline (TPH, 10 mg/kg i.v.) were assessed in rats (natural light-dark span, June 9–10) after i.p. pretreatment with saline and 80 mg/kg phenobarbital (PB), respectively, for 3 consecutive days at either 07:00 h or at 19:000 h. Serum concentrations of TPH were assayed by high-performance liquid chromatography. No significant differences of the elimination rates of TPH could be found between the times of TPH administration (clearance: 1.17 ± 0.17 ml/kg/min at 07:00 h vs. 1.23 ± 0.17 ml/kg/min at 19:00 hours). PB premedication markedly accelerated TPH elimination. The increase in clearance values was more expressed when TPH was injected at 07:00 h than at 19:00 h (2.48 ± 0.67 vs. 2.06 ± 0.41 ml/kg/min, p < 0.01).  相似文献   

17.
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.  相似文献   

18.
Malondialdehyde (MDA) formation in mouse liver homogenates was measured in the presence of various glutathione depletors (5 mmol/l). After a lag phase of 90 min, the MDA formation increased from 1.25 nmol/mg protein to 14.5 nmol/mg in the presence of diethyl maleate (DEM), to 10.5 with diethyl fumarate (DEF) and to 4 with cyclohexenon by 150 min. It remained at 1.25 nmol/mg with phorone and in the control. On the other hand, glutathione (GSH) dropped from 55 nmol/mg to 50 nmol/mg in the control to, < 1 with DEM, to 46 with DEF, to 3 with cyclohexenon and to 7 with phorone. The data show that the potency to deplete GSH is not related to MDA production in this system. DEM stimulated in vitro ethane evolution in a concentration-dependent manner and was strongly inhibited by SKF 525A. From type I binding spectra to microsomal pigments the following spectroscopic binding constants were determined: 2.5 mmol/l for phorone, 1.2 mmol/l for cyclohexenon, 0.5 mmol/l for DEM and 0.3 mmol/l for DEF. In isolated mouse liver microsomes NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase activity were unaffected by the presence of DEM, whereas ethoxycoumarin dealkylation was inhibited. Following in vivo pretreatment, hepatic microsomal electron flow as determined in vitro was augmented in the presence of depleting as well as non-depleting agents, accompanied by a shift from O2 to H2O2 production. It is concluded that it is not the absence of GSH which causes lipid peroxidation after chemically-induced GSH depletion but rather the interaction of the chemicals with the microsomal monoxygenase system.  相似文献   

19.
Ethanolic extract of propolis was administered to rats intoxicated by carbon tetrachloride. Administration of bolus dose of CCl4 (1.5 ml/kg, ip) resulted in elevation of serum transaminases and serum alkaline phosphatase activities. Levels of hepatic lipid peroxidation were significantly increased. On the contrary, there was significant decrease in hepatic reduced glutathione level. The propolis extract (100 and 200 mg/kg, po) exhibited recoupment in both pre- and post-treatment (prophylactic and curative studies) of biochemical changes induced by CCl4. The post treatment of 200 mg/kg, po extract showed most significant hepatoprotective effect. Histopathological studies showed damage in hepatocytes and disturbed chord arrangement after toxicant administration. Propolis extract (200 mg/kg, po) was found to be more effective in restoring CCl4 induced histopathological alterations.  相似文献   

20.
Administration of allylisopropylacetamide to rats caused a marked decline in the concentrations of reduced and oxidized glutathione in the liver. However, this decrease occurred in the presence of uninhibited activities of gamma-glutamylcysteine synthase and glutathione reductase, and unaltered activities of glutathione transferases A, B and C. The administration of cysteine, the rate-limiting precursor of glutathione formation, to rats treated with allylisopropylacetamide potentiated the inductive effects of the agent on 5-aminolaevulinate synthase, and markedly decreased the extent of decrease in glutathione concentrations by the agent. Conversely, the administration of diethyl maleate, which depletes the hepatic glutathione concentrations, to allylisopropylacetamide-pretreated rats (1h) diminished the extent of 5-aminolaevulinate synthase induction and the production of porphyrins by nearly 50%, when measured at 16h. This treatment did not alter the extent of non-enzymic degradation of liver haem by allylisopropylacetamide. When diethyl maleate was administered to the animals possessing high 5-aminolaevulinate synthase activity (at 3, 7 and 15h after allylisopropylacetamide), in 1h the enzyme activity was markedly decreased. Diethyl maleate had no effect on induction of 5-aminolaevulinate synthase by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, also a potent porphyrinogenic agent. Diethyl maleate alone neither inhibited 5-aminolaevulinate synthase activity nor decreased the cellular content of porphyrins and haem. The data suggest that the decreases observed in the glutathione concentrations after allylisopropylacetamide administration are not the result of decreased production of the tripeptide. Rather, they most likely reflect the increased utilization of glutathione. The findings further suggest that the inhibition by diethyl maleate of allylisopropylacetamide-stimulated 5-aminolaevulinate synthase involves the inhibition of induction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号